Open Access

Solvability of triple-point integral boundary value problems for a class of impulsive fractional differential equations

Advances in Difference Equations20172017:50

DOI: 10.1186/s13662-017-1099-0

Received: 10 November 2016

Accepted: 30 January 2017

Published: 9 February 2017

Abstract

This paper is concerned with a class of triple-point integral boundary value problems for impulsive fractional differential equations involving the Riemann-Liouville fractional derivative of order α (\(2<\alpha\leq3\)). Some sufficient criteria for the existence of solutions are obtained by applying the contraction mapping principle and the fixed point theorem. As an application, one example is given to demonstrate the validity of our main results.

Keywords

impulsive fractional differential equations existence of solutions integral boundary value problems fixed point theorem

MSC

34B10 34B15 34B37

1 Introduction

Towards the end of the 19th century Liouville and Riemann mentioned the definition of the fractional derivative which is the generalization of the traditional integer order differential and integral calculus. The fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes. The subject of fractional differential equations is gaining much importance and attention because of its extensive applications in many engineering and scientific disciplines such as physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry, biology, control theory, fitting of experimental data, and so forth. For more details of the basic theory of fractional differential equations, refer to [16] and the references therein. In recent decades, the boundary value problems of fractional differential equations have received a great deal of attention. There are a large number of papers dealing with the existence, nonexistence, multiplicity of solutions of boundary value problem for some nonlinear fractional differential equations (see [727]).

As we know, many evolutionary processes experience short-time rapid change after undergoing relatively long smooth variation. In order to describe the dynamics of populations subject to abrupt changes as well as other phenomena such as harvesting, diseases, and so on, some authors have used an impulsive differential system to describe these kinds of phenomena since the last century. For the theory of impulsive differential equations, the reader can refer to [2830]. Recently, the boundary value problems of impulsive fractional differential equations have been studied extensively in the literature (see [3145]). To the best of our knowledge, there are few articles involving the impulsive fractional order differential equations. Therefore, we will study the existence and uniqueness of solutions for the following impulsive integral boundary value problems (BVPs for short) of fractional order differential equations:
$$ \textstyle\begin{cases} {}_{t_{k}}D_{t}^{\alpha}u(t)= f(t,u,u',D^{\alpha-1}u), \quad t\neq t_{k},\\ \Delta D^{\alpha-1}u(t_{k})= I_{k}(u(t_{k})), \quad k=1,\dots,m,\\ u(0)=u'(0)=0, \quad\quad u'(1)=\int_{0}^{\eta}g(s,u(s))\,ds, \end{cases} $$
(1.1)
where \(2<\alpha\leq3\), \(J=[0,1]\), \(J_{0}=[t_{0},t_{1}]\), \(J_{k}=(t_{k},t_{k+1}]\subset J\) (\(k=1,2,\ldots,m\)). \({}_{t_{k}}D_{t}^{\alpha}\) is the Riemann-Liouville fractional derivative of order \(2<\alpha\leq3\). \(f\in C( J\times\mathbb{R}^{3}, \mathbb{R})\), \(I_{k}\in C(\mathbb{R}, \mathbb{R})\), \(0<\eta<1\), \(g\in C(J\times\mathbb{R},\mathbb{R})\), \(0=t_{0}< t_{1}<\cdots<t_{m}<t_{m+1}=1\). \(u(t_{k}^{+})=\lim_{h\rightarrow 0^{+}}u(t_{k}+h)\) and \(u(t_{k}^{-})=\lim_{h\rightarrow 0^{-}}u(t_{k}+h)\) represent the right and left limits of \(u(t)\) at \(t=t_{k}\), respectively. \(u(t_{k}^{-})=u(t_{k})\), \({}_{t_{k}}D_{t}^{\alpha-1}u(t_{k}^{-})= {}_{t_{k}}D_{t}^{\alpha-1}u(t_{k})\). The right-hand limits \(u(t_{k}^{+})\) and \({}_{t_{k}}D_{t}^{\alpha-1}u(t_{k}^{+})\) all exist. \(\Delta D^{\alpha-1}u(t_{k})= {}_{t_{k}}D_{t}^{\alpha-1}u(t_{k}^{+})- {}_{t_{k-1}}D_{t}^{\alpha-1}u(t_{k}^{-})\).

The rest of this paper is organized as follows. In Section 2, we shall introduce some definitions and lemmas to prove our main results. In Section 3, we give some sufficient conditions for the existence of single positive solutions for boundary value problem (1.1). As an application, one interesting example is presented to illustrate the main results in Section 4. Finally, the conclusion is given to simply recall our studied contents and obtained results in Section 5.

2 Preliminaries

Let \(C(J,\mathbb{R})\) be the Banach space of continuous functions from J to \(\mathbb{R}\) with the norm \(\Vert u\Vert _{C}=\sup_{0\leq t\leq1}\vert u(t)\vert \). Now let us to introduce the useful Banach space \(\mathit {PC}^{1}(J,\mathbb{R})\) defined by
$$\begin{aligned} \mathit {PC}^{1}(J,\mathbb{R})&= \bigl\{ u\in C(J, \mathbb{R}): {}_{t_{k}}D_{t}^{\alpha-1}u\bigl(t_{k}^{+} \bigr) \mbox{ and } {}_{t_{k}}D_{t}^{\alpha-1}u \bigl(t_{k}^{-}\bigr) \mbox{ exist with} \\ &\quad {}_{t_{k}}D_{t}^{\alpha-1}u(t_{k}) = {}_{t_{k}}D_{t}^{\alpha-1}u\bigl(t_{k}^{-}\bigr), k=0,1,\dots, m \bigr\} \end{aligned}$$
(2.1)
equipped with the norm \(\Vert u\Vert _{\mathit {PC}^{1}}=\max\{\Vert u\Vert _{C}, \Vert u'\Vert _{C}, \Vert {}_{t_{k}}D_{t}^{\alpha -1}u\Vert _{C}\}\).

Definition 2.1

A function \(u\in \mathit {PC}^{1}(J,\mathbb{R})\) with its Riemann-Liouville derivative of order α existing on J is a solution of (1.1) if it satisfies (1.1).

For convenience of the reader, we present here the necessary definitions from fractional calculus theory. These definitions and properties can be found in the literature [2, 4, 6].

Definition 2.2

The Riemann-Liouville fractional integral of order \(\alpha>0\) of a function \(u:(a,+\infty)\rightarrow \mathbb{R}\) is given by
$${}_{a}I_{t}^{\alpha}u(t)=\frac{1}{\Gamma(\alpha)} \int _{a}^{t}(t-s)^{\alpha-1}u(s)\,ds, \quad a>0, $$
provided that the right-hand side is point-wise defined on \((a,+\infty)\).

Definition 2.3

The Riemann-Liouville fractional derivative of order \(\alpha>0\) of a continuous function \(u:(a,+\infty)\rightarrow \mathbb{R}\) is given by
$${}_{a}D_{t}^{\alpha}u(t)=\frac{1}{\Gamma(n-\alpha)} \frac {d^{n}}{dt^{n}} \int_{a}^{t}(t-s)^{n-\alpha-1}u(s)\,ds, $$
where \(a>0\), \(n-1<{\alpha}\leq n\), provided that the right-hand side is point-wise defined on \((a,+\infty)\).

Lemma 2.1

Assume that \(u\in C[a,b]\), \(q\geq p\geq0\), then
$$\begin{aligned} {}_{a}D_{t}^{p} {}_{a}I_{t}^{q}u(t)={}_{a}I_{t}^{q-p}u(t), \quad t\in [a,b]. \end{aligned}$$
(2.2)

Lemma 2.2

see [6], pp. 36-39

Let \(\alpha>0\), n denotes the smallest integer greater than or equal to α. Then the following assertions hold.
  1. (i)
    if \(\lambda>-1\), \(\lambda\neq\alpha-i\), \(i=1, 2, \ldots, n+1\), then for \(t\in[a,b]\)
    $$\begin{aligned} {}_{a}D_{t}^{\alpha}(t-a)^{\lambda}= \frac{\Gamma(\lambda+1)}{\Gamma (\lambda-\alpha+1)}(t-a)^{\lambda-\alpha}. \end{aligned}$$
    (2.3)
     
  2. (ii)

    \({}_{a}D_{t}^{\alpha}(t-a)^{\alpha-i}=0\), \(i=1, 2, \ldots, n\).

     
  3. (iii)

    \({}_{a}D_{t}^{\alpha}{} _{a}I_{t}^{\alpha }u(t)=u(t)\), for all \(t\in[a,b]\).

     
  4. (iv)
    \({}_{a}D_{t}^{\alpha}u(t)=0\) if and only if there exists \(c_{i}\in\mathbb{R}\) (\(i=1,2,\ldots,n\)) such that
    $$\begin{aligned} u(t)=c_{1}(t-a)^{\alpha-1}+c_{2}(t-a)^{\alpha-2} +\cdots +c_{n}(t-a)^{\alpha-n}, \quad t\in[a,b]. \end{aligned}$$
    (2.4)
     
  5. (v)
    For all \(t\in[a,b]\), then
    $$\begin{aligned} {}_{a}I_{t}^{\alpha}{} _{a}D_{t}^{\alpha}u(t) =c_{1}(t-a)^{\alpha-1}+c_{2}(t-a)^{\alpha-2} +\cdots+c_{n}(t-a)^{\alpha-n}+u(t). \end{aligned}$$
    (2.5)
     

Lemma 2.3

Schauder fixed point theorem; see [46]

If U is a closed bounded convex subset of a Banach space X and \(T :U \rightarrow U\) is completely continuous, then T has at least one fixed point in U.

Lemma 2.4

For a given \(y\in C(J,\mathbb{R})\), a function \(u\in \mathit {PC}^{1}(J,\mathbb{R})\) is a solution of BVP (2.6)
$$ \textstyle\begin{cases} {}_{t_{k}}D_{t}^{\alpha}u(t)= y(t),\quad t\neq t_{k}, 2< \alpha\leq3, \\ \Delta D^{\alpha-1}u(t_{k})= I_{k}(u(t_{k})), \quad k=1,\dots,m,\\ u(0)=u'(0)=0, \quad\quad u'(1)=\int_{0}^{\eta}g(s,u(s))\,ds, \end{cases} $$
(2.6)
if and only if \(u\in \mathit {PC}^{1}(J,\mathbb{R})\) is a solution of the impulsive fractional integral equation
$$\begin{aligned} u(t)&=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}y(s)\,ds - \frac{t^{\alpha-1}}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-2}y(s)\,ds \\ &\quad{} -\frac{t^{\alpha-1}}{\Gamma(\alpha)}\sum_{t\leq t_{i}}I_{i} \bigl(u(t_{i})\bigr) +\frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}g\bigl(s,u(s)\bigr)\,ds, \quad 0\leq t\leq1. \end{aligned}$$
(2.7)

Proof

We denote the solution of (2.6) by \(u(t)=u_{k}(t)\) in \([t_{k}, t_{k+1}]\) (\(k=1,2,\ldots,m\)). For \(t\in J_{0}=[0,t_{1}]\), by (2.5), we have
$$\begin{aligned} u_{0}(t)= {}_{0}I_{t}^{\alpha}y(t)+c_{01}t^{\alpha-1}+c_{02}t^{\alpha-2} +c_{03}t^{\alpha-3}. \end{aligned}$$
\(u(0)=u'(0)=0\) implies that \(c_{02}=c_{03}=0\). Applying Lemma 2.2, we get
$$\begin{aligned}& u_{0}(t)= {}_{0}I_{t}^{\alpha}y(t)+c_{01}t^{\alpha-1}, \\& D^{\alpha-1}_{t}u_{0}(t)=D^{\alpha-1}_{t} \bigl[{}_{0}I_{t}^{\alpha }y(t)+c_{01}t^{\alpha-1} \bigr] = \int_{0}^{t}y(s)\,ds+\Gamma(\alpha)c_{01}, \end{aligned}$$
and
$$\begin{aligned} D^{\alpha-1}u\bigl(t_{1}^{+}\bigr)&=D^{\alpha-1}u_{0} \bigl(t_{1}^{+}\bigr) =D^{\alpha-1}u_{0}(t_{1})+I_{1} \bigl(u(t_{1})\bigr) \\ &= \int_{0}^{t_{1}}y(s)\,ds+\Gamma(\alpha)c_{01}+I_{1} \bigl(u(t_{1})\bigr). \end{aligned}$$
For \(t\in J_{1}=(t_{1},t_{2}]\), by (2.5), we get
$$\begin{aligned} u_{1}(t)= {}_{0}I_{t}^{\alpha}y(t)+c_{11}t^{\alpha-1}+c_{12}t^{\alpha-2} +c_{13}t^{\alpha-3} \end{aligned}$$
and
$$\begin{aligned} D^{\alpha-1}_{t}u_{1}(t)= \int_{0}^{t}y(s)\,ds+\Gamma(\alpha)c_{11}. \end{aligned}$$
Noting that \(u(0)=u'(0)=0\) and \(D^{\alpha-1}u_{1}(t_{1})= D^{\alpha-1}u_{0}(t_{1}^{+})\), we derive \(c_{12}=c_{13}=0\) and \(c_{11}=c_{01}+\frac{I_{1}(u(t_{1}))}{\Gamma(\alpha)}\). So we can obtain
$$\begin{aligned} u_{1}(t)= {}_{0}I_{t}^{\alpha}y(t)+ \biggl[c_{01}+\frac {I_{1}(u(t_{1}))}{\Gamma(\alpha)} \biggr]t^{\alpha-1} \end{aligned}$$
and
$$\begin{aligned} D^{\alpha-1}u\bigl(t_{2}^{+}\bigr)=D^{\alpha-1}u_{1} \bigl(t_{2}^{+}\bigr) =D^{\alpha-1}u_{1}(t_{2})+I_{2} \bigl(u(t_{2})\bigr)= \int_{0}^{t_{2}}y(s)\,ds+\Gamma(\alpha )c_{01}+ \sum_{i=1}^{2}I_{i} \bigl(u(t_{i})\bigr). \end{aligned}$$
By the recurrent method, for \(t\in J_{k}=(t_{k},t_{k+1}]\), \(k=2,3,\ldots,m\), we get
$$\begin{aligned} u_{k}(t)&= {}_{0}I_{t}^{\alpha}y(t)+ \Biggl[c_{01}+\frac{1}{\Gamma (\alpha)}\sum_{i=1}^{k}I_{i} \bigl(u(t_{i})\bigr) \Biggr]t^{\alpha-1} \\ &=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}y(s)\,ds + \Biggl[c_{01}+\frac{1}{\Gamma(\alpha)}\sum_{i=1}^{k}I_{i} \bigl(u(t_{i})\bigr) \Biggr]t^{\alpha-1} \end{aligned}$$
and
$$\begin{aligned} D^{\alpha-1}u\bigl(t_{k+1}^{+}\bigr)&=D^{\alpha-1}u_{k} \bigl(t_{k+1}^{+}\bigr) =D^{\alpha-1}u_{k}(t_{k+1})+I_{k+1} \bigl(u(t_{k+1})\bigr) \\ &= \int_{0}^{t_{k+1}}y(s)\,ds+\Gamma(\alpha)c_{01}+ \sum_{i=1}^{k+1}I_{i} \bigl(u(t_{i})\bigr). \end{aligned}$$
So, for \(t\in J_{m}=(t_{m},t_{m+1}]\), we have
$$\begin{aligned} u'(t)=u'_{m}(t)=\frac{1}{\Gamma(\alpha-1)} \int_{0}^{t}(t-s)^{\alpha-2}y(s)\,ds +(\alpha-1) \Biggl[c_{01}+\frac{1}{\Gamma(\alpha)}\sum_{i=1}^{m}I_{i} \bigl(u(t_{i})\bigr) \Biggr]t^{\alpha-2}. \end{aligned}$$
By \(u'(1)=\int_{0}^{\eta}u(s)\psi(s)\,ds\), we have
$$\begin{aligned} \int_{0}^{\eta}g\bigl(s,u(s)\bigr)\,ds= \frac{1}{\Gamma(\alpha-1)} \int _{0}^{1}(1-s)^{\alpha-2}y(s)\,ds +(\alpha-1) \Biggl[c_{01}+\frac{1}{\Gamma(\alpha)}\sum_{i=1}^{m}I_{i} \bigl(u(t_{i})\bigr) \Biggr], \end{aligned}$$
which implies that
$$\begin{aligned} c_{01}=\frac{1}{\alpha-1} \int_{0}^{\eta}g\bigl(s,u(s)\bigr)\,ds - \frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-2}y(s)\,ds - \frac{1}{\Gamma(\alpha)}\sum_{i=1}^{m}I_{i} \bigl(u(t_{i})\bigr). \end{aligned}$$
Therefore, for \(t\in J=[0,1]\), we have
$$\begin{aligned} u(t)&=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}y(s)\,ds + \frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}g\bigl(s,u(s)\bigr)\,ds \\ &\quad{} -\frac{t^{\alpha-1}}{\Gamma(\alpha)} \Biggl[ \int _{0}^{1}(1-s)^{\alpha-2}y(s)\,ds +\sum _{i=1}^{m}I_{i} \bigl(u(t_{i})\bigr)-\sum_{t_{i}< t}I_{i} \bigl(u(t_{i})\bigr) \Biggr] \\ &=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}y(s)\,ds - \frac{t^{\alpha-1}}{\Gamma(\alpha)} \biggl[ \int _{0}^{1}(1-s)^{\alpha-2}y(s)\,ds +\sum _{t\leq t_{i}}I_{i}\bigl(u(t_{i})\bigr) \biggr] \\ &\quad{} +\frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}g\bigl(s,u(s)\bigr)\,ds, \end{aligned}$$
which indicates that u is a solution of (2.7). Conversely, noting that the above derivations are reversible, we assert that if u is a solution of the impulsive fractional integral equation (2.7), then u is also the solution of BVP (2.6). The proof is complete. □

3 Main results

According to Lemma 2.4, we obtain the following lemma.

Lemma 3.1

A function \(u\in \mathit {PC}^{1}(J,\mathbb{R})\) is a solution of BVP (1.1) if and only if \(u\in \mathit {PC}^{1}(J,\mathbb{R})\) is a solution of the impulsive fractional integral equation
$$\begin{aligned} u(t)&=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha -1}f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\,ds \\ &\quad{} - \biggl[ \int_{0}^{1}(1-s)^{\alpha-2}f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\,ds +\sum _{t\leq t_{i}}I_{i}\bigl(u(t_{i})\bigr) \biggr] \frac{t^{\alpha-1}}{\Gamma(\alpha)} \\ &\quad{} +\frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}g\bigl(s,u(s)\bigr)\,ds, \quad 0\leq t\leq1. \end{aligned}$$
(3.1)
Define an operator \(T : \mathit {PC}^{1}(J,\mathbb{R})\rightarrow \mathit {PC}^{1}(J,\mathbb {R})\) as follows:
$$\begin{aligned} (Tu) (t)&=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha -1}f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\,ds \\ &\quad{} - \biggl[ \int_{0}^{1}(1-s)^{\alpha-2}f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\,ds +\sum _{t\leq t_{i}}I_{i}\bigl(u(t_{i})\bigr) \biggr] \frac{t^{\alpha-1}}{\Gamma(\alpha)} \\ &\quad{} +\frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}g\bigl(s,u(s)\bigr)\,ds, \quad 0\leq t\leq1. \end{aligned}$$
(3.2)
Then BVP (1.1) has a solution if and only if the operator T exists one fixed point.

Lemma 3.2

Assume that \(f\in C( J\times\mathbb{R}^{3}, \mathbb{R})\), and \(g\in C(J\times\mathbb{R}, \mathbb{R})\). Then \(T: \mathit {PC}^{1}(J,\mathbb{R}) \rightarrow \mathit {PC}^{1}(J,\mathbb{R})\) defined by (3.2) is completely continuous.

Proof

Note that T is continuous in view of continuity of f, \(I_{k}\), and g. Now we show that T is uniformly bounded. In fact, let \(\Omega\subset \mathit {PC}^{1}(J,\mathbb{R})\) be bounded, then there exist some positive constants \(l_{i}\) (\(i=1,2,3\)) such that \(\vert f(t,u,u',D^{\alpha-1}u)\vert \leq l_{1}\), \(\vert g(t,u)\vert \leq l_{2}\), \(\vert I_{k}(u)\vert \leq l_{3}\), for all \(u\in\Omega\). Thus for \(u\in\Omega\), we have
$$\begin{aligned}& \begin{aligned} \bigl\vert (Tu) (t)\bigr\vert &\leq\frac{1}{\Gamma(\alpha)} \int _{0}^{t}(t-s)^{\alpha-1}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)\bigr\vert \,ds \\ &\quad{} + \biggl[ \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds +\sum _{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert \biggr]\frac{t^{\alpha -1}}{\Gamma(\alpha)} \\ &\quad{} +\frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\ &\leq\frac{2l_{1}+ml_{3}}{\Gamma(\alpha)}+\frac{l_{2}\eta}{\alpha -1}\triangleq M_{1}, \end{aligned} \\& \begin{aligned} \bigl\vert (Tu)'(t)\bigr\vert & = \biggl\vert \frac{1}{\Gamma(\alpha-1)} \int_{0}^{t}(t-s)^{\alpha -2}f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\,ds \\ & \quad {} - \frac{t^{\alpha-2}}{\Gamma(\alpha-1)} \int_{0}^{1}(1-s)^{\alpha -2}f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\,ds \\ & \quad {} - \frac{t^{\alpha-2}}{\Gamma(\alpha-1)}\sum_{t\leq t_{i}}I_{i} \bigl(u(t_{i})\bigr) +t^{\alpha-2} \int_{0}^{\eta}g\bigl(s,u(s)\bigr)\,ds\biggr\vert \\ & \leq \int_{0}^{1}\frac{(1-s)^{\alpha-2}}{\Gamma(\alpha -1)}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds \\ &\quad {} + \int_{0}^{1}\frac{(1-s)^{\alpha-2}}{\Gamma(\alpha-1)}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds \\ & \quad {} +\frac{1}{\Gamma(\alpha-1)}\sum_{t\leq t_{i}} \bigl\vert I_{i}\bigl(u(t_{i})\bigr)\bigr\vert + \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\ & \leq\frac{2l_{1}+ml_{3}}{\Gamma(\alpha-1)}+l_{2}\eta\triangleq M_{2} \end{aligned} \end{aligned}$$
and
$$\begin{aligned}& \bigl\vert D^{\alpha-1}(Tu) (t)\bigr\vert \\ & \quad = \biggl\vert \int_{0}^{t}f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s) \bigr)\,ds - \int _{0}^{1}(1-s)^{\alpha-2}f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\,ds \\ & \quad\quad {} - \sum_{t\leq t_{i}}I_{i}\bigl(u(t_{i}) \bigr)+\Gamma(\alpha-1) \int_{0}^{\eta }g\bigl(s,u(s)\bigr)\,ds\biggr\vert \\ & \quad \leq \int_{0}^{t}\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha -1}u(s) \bigr)\bigr\vert \,ds + \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds \\ & \quad\quad {} +\sum_{t\leq t_{i}}\bigl\vert I_{i}\bigl(u(t_{i})\bigr)\bigr\vert +\Gamma(\alpha -1) \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\ & \quad \leq 2l_{1}+ml_{3}+l_{2}\eta\Gamma(\alpha-1) \triangleq M_{3}, \end{aligned}$$
which means that \(\Vert u\Vert _{\mathit {PC}^{1}}\leq\max\{ M_{1},M_{2},M_{3}\}\), that is, T is uniformly bounded.
Next, we should prove that T is equicontinuous on \(J=[0,1]\). Indeed, for all \(\bar{t}_{1}, \bar{t}_{2}\in[0,1]\) with \(\bar{t}_{1}\leq \bar{t}_{2}\), we have
$$\begin{aligned}& \begin{aligned} \bigl\vert (Tu) (\bar{t}_{2})-(Tu) (\bar{t}_{1})\bigr\vert &=\biggl\vert \int_{\bar{t}_{1}}^{\bar{t}_{2}}(Tu)'(s)\,ds\biggr\vert \leq \int_{\bar {t}_{1}}^{\bar{t}_{2}}\bigl\vert (Tu)'(s)\bigr\vert \,ds \\ &\leq M_{2}(\bar{t}_{2}-\bar{t}_{1}) \rightarrow 0, \quad \mbox{as } \bar {t}_{1}\rightarrow \bar{t}_{2}, \end{aligned} \\ & \begin{gathered} \bigl\vert (Tu)'(\bar{t}_{2})-(Tu)'( \bar{t}_{1})\bigr\vert \\ \quad \leq \frac{1}{\Gamma(\alpha-1)} \int_{0}^{\bar{t}_{1}} \bigl[(\bar {t}_{2}-s)^{\alpha-2}-( \bar{t}_{1}-s)^{\alpha-2} \bigr] \bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s) \bigr)\bigr\vert \,ds \\ \quad\quad{} +\frac{1}{\Gamma(\alpha-1)} \int_{\bar{t}_{1}}^{\bar{t}_{2}}(\bar {t}_{2}-s)^{\alpha-2} \bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds \\ \quad\quad{} +\frac{\bar{t}_{2}^{\alpha-2}-\bar{t}_{1}^{\alpha-2}}{\Gamma (\alpha-1)} \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)\bigr\vert \,ds \\ \quad\quad{} +\frac{\bar{t}_{2}^{\alpha-2}-\bar{t}_{1}^{\alpha-2}}{\Gamma (\alpha-1)}\sum_{\bar{t}_{2}\leq t_{i}}\bigl\vert I_{i}\bigl(u(t_{i})\bigr)\bigr\vert +\frac{\bar{t}_{1}^{\alpha-2}}{\Gamma(\alpha-1)} \sum_{\bar {t}_{1}\leq t_{i}< \bar{t}_{2}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert \\ \quad\quad{} +\bigl(\bar{t}_{2}^{\alpha-2}-\bar{t}_{1}^{\alpha-2} \bigr) \int_{0}^{\eta }\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\ \quad \leq \frac{l_{1}}{\Gamma(\alpha)}\bigl(\bar{t}_{2}^{\alpha-1}-\bar {t}_{1}^{\alpha-1}\bigr) +\frac{l_{1}}{\Gamma(\alpha)}(\bar{t}_{2}- \bar{t}_{1})^{\alpha-1} +\frac{l_{1}}{\Gamma(\alpha)}\bigl( \bar{t}_{2}^{\alpha-2}-\bar {t}_{1}^{\alpha-2}\bigr) \\ \quad\quad{} +\frac{ml_{3}}{\Gamma(\alpha-1)}\bigl(\bar{t}_{2}^{\alpha-2}-\bar {t}_{1}^{\alpha-2}\bigr) +\frac{l_{3}}{\Gamma(\alpha-1)}(\bar{t}_{2}- \bar{t}_{1}) +l_{2}\eta\bigl(\bar{t}_{2}^{\alpha-2}- \bar{t}_{1}^{\alpha-2}\bigr)\rightarrow 0, \\ \quad\quad \mbox{as } \bar{t}_{1}\rightarrow \bar{t}_{2}, \end{gathered} \end{aligned}$$
and
$$\begin{aligned} \bigl\vert D^{\alpha-1}(Tu) (\bar{t}_{2})-D^{\alpha-1}(Tu) ( \bar {t}_{1})\bigr\vert &=\biggl\vert \int_{\bar{t}_{1}}^{\bar{t}_{2}}f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s) \bigr)\,ds +\sum_{\bar{t}_{1}\leq t_{i}< \bar{t}_{2}}I_{i} \bigl(u(t_{i})\bigr)\biggr\vert \\ &\leq \int_{\bar{t}_{1}}^{\bar{t}_{2}}\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s) \bigr)\bigr\vert \,ds +\sum_{\bar{t}_{1}\leq t_{i}< \bar{t}_{2}}\bigl\vert I_{i}\bigl(u(t_{i})\bigr)\bigr\vert \\ &\leq l_{1}(\bar{t}_{2}-\bar{t}_{1})+l_{3}( \bar{t}_{2}-\bar {t}_{1})\rightarrow 0, \quad \mbox{as } \bar{t}_{1}\rightarrow \bar{t}_{2}. \end{aligned}$$
Thus, for any \(\varepsilon>0\) (small enough), there exists \(\delta=\delta(\varepsilon)>0\) with independence of \(\bar{t}_{1}\), \(\bar{t}_{2}\) and u such that \(\Vert (Tu)(\bar{t}_{2})-(Tu)(\bar{t}_{1})\Vert _{\mathit {PC}^{1}}<\varepsilon\), whenever \(\vert \bar{t}_{2}-\bar{t}_{1}\vert <\delta\). Therefore, T is equicontinuous on \(J=[0,1]\). According to the Arzela-Ascoli theorem, it follows that \(T : \mathit {PC}^{1}(J,\mathbb{R})\rightarrow \mathit {PC}^{1}(J,\mathbb{R})\) is completely continuous. □

Theorem 3.1

Assume that the conditions \((B_{1})\)-\((B_{3})\) hold.
\((B_{1})\)
\(f\in C(J\times\mathbb{R}^{3}, \mathbb{R})\), for all \((t,u,v,w), (t, \bar{u}, \bar{v}, \bar{w})\in J\times\mathbb{R}^{3}\), there exist some functions \(\psi_{i}\in L([0,1])\) (\(i=1,2,3\)) such that
$$\begin{aligned} \bigl\vert f(t,u,v,w)-f(t,\bar{u},\bar{v},\bar{w})\bigr\vert &\leq\bigl\vert \psi_{1}(t)\bigr\vert \vert u-\bar{u}\vert \\ &\quad{} +\bigl\vert \psi_{2}(t)\bigr\vert \vert v-\bar {v}\vert + \bigl\vert \psi_{3}(t)\bigr\vert \vert w-\bar {w}\vert . \end{aligned}$$
\((B_{2})\)
\(I_{k}\in C(\mathbb{R},\mathbb{R})\), for all \(u, v\in \mathbb{R}\), there exist some constants \(L_{k}>0\) such that
$$\bigl\vert I_{k}(u)-I_{k}(v)\bigr\vert \leq L_{k}\vert u-v\vert , \quad k=1,2,\ldots,m. $$
\((B_{3})\)
\(g\in C(J,\mathbb{R})\), for all \((t,u), (t,v)\in J\times\mathbb{R}\), there exists a function \(\psi\in L([0,1])\) such that
$$\bigl\vert g(t,u)-g(t,v)\bigr\vert \leq\bigl\vert \psi(t)\bigr\vert \vert u-v\vert . $$
If \(\rho=2\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi_{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds+ \sum_{k=1}^{m}L_{k}+\Gamma(\alpha-1)\int_{0}^{\eta} \vert \psi(s)\vert \,ds<1\), then BVP (1.1) has a unique solution on J.

Proof

Let \(M=\sup_{t\in J}\vert f(t,0,0,0)\vert + \sup_{t\in J}\vert g(t,0)\vert \) and \(B_{r}=\{u\in \mathit {PC}(J,\mathbb{R}):\Vert u\Vert _{\mathit {PC}^{1}}\leq r\}\), where \(r\geq\frac{1}{1-\rho} [(2+\Gamma(\alpha-1)\eta)M+\sum_{k=1}^{m} \vert I_{k}(0)\vert ]\). Define an operator \(T: B_{r}\rightarrow \mathit {PC}(J, \mathbb{R})\) as (3.2). It is obvious that T is jointly continuous and maps bounded subsets of \(J \times\mathbb{R}\) to bounded subsets of \(\mathbb{R}\). We will prove Theorem 3.1 through the following two steps.

Step 1. We show that \(T(B_{r})\subset B_{r}\). In fact, noting that \(u(0)=u'(0)=D^{\alpha-1}u(0)=0\), we have, for \(u\in B_{r}\), \(t\in J=[0,1]\),
$$\begin{aligned}& \bigl\vert (Tu) (t)\bigr\vert \\& \quad \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds + \frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{} +\frac{t^{\alpha-1}}{\Gamma(\alpha)} \biggl[ \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds +\sum _{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert \biggr] \\& \quad \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \bigl[\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{} +\frac{t^{\alpha-1}}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha -2} \bigl[\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{}+\frac{t^{\alpha-1}}{\Gamma(\alpha)}\sum_{t\leq t_{i}} \bigl[\bigl\vert I_{i}\bigl(u(t_{i})\bigr)-I_{i}\bigl(u(0)\bigr) \bigr\vert +\bigl\vert I_{i}\bigl(u(0)\bigr)\bigr\vert \bigr] \\& \quad\quad{}+\frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta} \bigl[\bigl\vert g\bigl(s,u(s) \bigr)-g(s,0)\bigr\vert +\bigl\vert g(s,0)\bigr\vert \bigr]\,ds \\& \quad \leq \frac{r\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi_{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds+M}{\Gamma(\alpha)} +\frac{r\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi _{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds+M}{\Gamma (\alpha)} \\& \quad\quad{} +\frac{1}{\Gamma(\alpha)}\sum_{k=1}^{m} \bigl[L_{k}r+\bigl\vert I_{k}(0)\bigr\vert \bigr] + \frac{r}{\alpha-1} \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds+ \frac{\eta M}{\alpha-1} \\& \quad = \Biggl[\frac{2\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi_{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds}{\Gamma(\alpha)} +\frac{1}{\Gamma(\alpha)}\sum_{k=1}^{m}L_{k}+ \frac{1}{\alpha-1} \int _{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]r \\& \quad\quad{} + \biggl[\frac{2}{\Gamma(\alpha)}+\frac{\eta}{\alpha-1} \biggr]M+\frac{1}{\Gamma(\alpha)}\sum _{k=1}^{m}\bigl\vert I_{k}(0) \bigr\vert \\& \quad \leq \Biggl[2 \int_{0}^{1}\bigl[\bigl\vert \psi_{1}(s) \bigr\vert +\bigl\vert \psi_{2}(s)\bigr\vert +\bigl\vert \psi_{3}(s)\bigr\vert \bigr]\,ds +\sum_{k=1}^{m}L_{k}+ \Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi (s)\bigr\vert \,ds \Biggr]r \\& \quad\quad{} + \bigl[2+\Gamma(\alpha-1)\eta \bigr]M+\sum_{k=1}^{m} \bigl\vert I_{k}(0)\bigr\vert \\& \quad \leq \rho r+(1-\rho)r=r, \\& \bigl\vert (Tu)'(t)\bigr\vert \\& \quad \leq \frac{1}{\Gamma(\alpha-1)} \int_{0}^{t}(t-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{}+\frac{t^{\alpha-2}}{\Gamma(\alpha-1)} \int _{0}^{1}(1-s)^{\alpha-2} \bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{}+\frac{t^{\alpha-2}}{\Gamma(\alpha-1)}\sum_{t\leq t_{i}}\bigl\vert I_{i}\bigl(u(t_{i})\bigr)\bigr\vert +t^{\alpha-2} \int_{0}^{\eta }\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-2}}{\Gamma(\alpha -1)} \bigl[\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{}+ \int_{0}^{1}\frac{[t(1-s)]^{\alpha-2}}{\Gamma(\alpha -1)} \bigl[\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{} +\frac{t^{\alpha-2}}{\Gamma(\alpha-1)}\sum_{t\leq t_{i}} \bigl[\bigl\vert I_{i}\bigl(u(t_{i})\bigr)-I_{i}\bigl(u(0)\bigr) \bigr\vert +\bigl\vert I_{i}\bigl(u(0)\bigr)\bigr\vert \bigr] \\& \quad\quad{} +t^{\alpha-2} \int_{0}^{\eta} \bigl[\bigl\vert g\bigl(s,u(s) \bigr)-g(s,0)\bigr\vert +\bigl\vert g(s,0)\bigr\vert \bigr]\,ds \\& \quad \leq \frac{r\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi_{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds+M}{\Gamma(\alpha-1)} +\frac{r\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi _{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds+M}{\Gamma (\alpha-1)} \\& \quad\quad{} +\frac{1}{\Gamma(\alpha-1)}\sum_{k=1}^{m} \bigl[L_{k}r+\bigl\vert I_{k}(0)\bigr\vert \bigr] +r \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds+ \eta M \\& \quad = \Biggl[\frac{2\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi_{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds}{\Gamma(\alpha-1)} +\frac{1}{\Gamma(\alpha-1)}\sum _{k=1}^{m}L_{k}+ \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]r \\& \quad\quad{} + \biggl[\frac{2}{\Gamma(\alpha-1)}+\eta \biggr]M+\frac{1}{\Gamma (\alpha-1)}\sum _{k=1}^{m}\bigl\vert I_{k}(0)\bigr\vert \\& \quad \leq \Biggl[2 \int_{0}^{1}\bigl[\bigl\vert \psi_{1}(s) \bigr\vert +\bigl\vert \psi_{2}(s)\bigr\vert +\bigl\vert \psi_{3}(s)\bigr\vert \bigr]\,ds +\sum_{k=1}^{m}L_{k}+ \Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi (s)\bigr\vert \,ds \Biggr]r \\& \quad\quad{}+ \bigl[2+\Gamma(\alpha-1)\eta \bigr]M+\sum_{k=1}^{m} \bigl\vert I_{k}(0)\bigr\vert \\& \quad \leq \rho r+(1-\rho)r=r \end{aligned}$$
and
$$\begin{aligned}& \bigl\vert D^{\alpha-1}(Tu) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s) \bigr)\bigr\vert \,ds + \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{} +\sum_{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\& \quad \leq \int_{0}^{t} \bigl[\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{}+ \int_{0}^{1}(1-s)^{\alpha-2} \bigl[\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{} +\Gamma(\alpha-1) \int_{0}^{\eta} \bigl[\bigl\vert g\bigl(s,u(s) \bigr)-g(s,0)\bigr\vert +\bigl\vert g(s,0)\bigr\vert \bigr]\,ds \\& \quad\quad{} +\sum_{t\leq t_{i}} \bigl[\bigl\vert I_{i} \bigl(u(t_{i})\bigr)-I_{i}\bigl(u(0)\bigr)\bigr\vert + \bigl\vert I_{i}\bigl(u(0)\bigr)\bigr\vert \bigr] \\& \quad \leq r \int_{0}^{1}\bigl[\bigl\vert \psi_{1}(s) \bigr\vert +\bigl\vert \psi_{2}(s)\bigr\vert +\bigl\vert \psi_{3}(s)\bigr\vert \bigr]\,ds+M +r \int_{0}^{1}\bigl[\bigl\vert \psi_{1}(s) \bigr\vert +\bigl\vert \psi _{2}(s)\bigr\vert +\bigl\vert \psi_{3}(s)\bigr\vert \bigr]\,ds+M \\& \quad\quad{}+\sum_{k=1}^{m} \bigl[L_{k}r+ \bigl\vert I_{k}(0)\bigr\vert \bigr] +\Gamma(\alpha-1) \biggl[r \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds+ \eta M \biggr] \\& \quad = \Biggl[2 \int_{0}^{1}\bigl[\bigl\vert \psi_{1}(s) \bigr\vert +\bigl\vert \psi_{2}(s)\bigr\vert +\bigl\vert \psi_{3}(s)\bigr\vert \bigr]\,ds +\sum_{k=1}^{m}L_{k}+ \Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi (s)\bigr\vert \,ds \Biggr]r \\& \quad\quad{} + \bigl[2+\Gamma(\alpha-1)\eta \bigr]M+\sum_{k=1}^{m} \bigl\vert I_{k}(0)\bigr\vert \\& \quad \leq \rho r+(1-\rho)r=r, \end{aligned}$$
which imply that \(\Vert Tu\Vert _{\mathit {PC}^{1}}\leq r\), that is, \(T(B_{r})\subset B_{r}\).
Step 2. We show that T is a contraction mapping. Indeed, for all \(u, v\in B_{r}\), for each \(t\in J=[0,1]\), we obtain
$$\begin{aligned}& \bigl\vert (Tu) (t)-(Tv) (t)\bigr\vert \\& \quad \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\& \quad\quad{}+\frac{t^{\alpha-1}}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\& \quad\quad{}+\frac{t^{\alpha-1}}{\Gamma(\alpha)}\sum_{t\leq t_{i}}\bigl\vert I_{i}\bigl(u(t_{i})\bigr)-I_{i} \bigl(v(t_{i})\bigr)\bigr\vert +\frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)-g \bigl(s,v(s)\bigr)\bigr\vert \,ds \\& \quad \leq \Biggl[\frac{2\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi_{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds}{\Gamma(\alpha)} +\frac{1}{\Gamma(\alpha)}\sum _{k=1}^{m}L_{k} \\& \quad\quad{}+\frac{1}{\alpha-1} \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}} \\& \quad \leq \Biggl[2 \int_{0}^{1}\bigl[\bigl\vert \psi_{1}(s) \bigr\vert +\bigl\vert \psi_{2}(s)\bigr\vert +\bigl\vert \psi_{3}(s)\bigr\vert \bigr]\,ds +\sum_{k=1}^{m}L_{k} +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}} \\& \quad = \rho \Vert u-v\Vert _{\mathit {PC}^{1}}, \\& \bigl\vert (Tu)'(t)-(Tv)'(t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac {(t-s)^{\alpha-2}}{\Gamma(\alpha-1)}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\& \quad\quad{} +\frac{t^{\alpha-2}}{\Gamma(\alpha-1)} \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\& \quad\quad{} +\frac{t^{\alpha-2}}{\Gamma(\alpha-1)}\sum_{t\leq t_{i}}\bigl\vert I_{i}\bigl(u(t_{i})\bigr)-I_{i} \bigl(v(t_{i})\bigr)\bigr\vert +t^{\alpha-2} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)-g \bigl(s,v(s)\bigr)\bigr\vert \,ds \\& \quad \leq \Biggl[\frac{2\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi_{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds}{\Gamma(\alpha-1)} +\frac{1}{\Gamma(\alpha-1)}\sum _{k=1}^{m}L_{k} + \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}} \\& \quad \leq \Biggl[2 \int_{0}^{1}\bigl[\bigl\vert \psi_{1}(s) \bigr\vert +\bigl\vert \psi_{2}(s)\bigr\vert +\bigl\vert \psi_{3}(s)\bigr\vert \bigr]\,ds +\sum_{k=1}^{m}L_{k} +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}} \\& \quad = \rho \Vert u-v\Vert _{\mathit {PC}^{1}}, \end{aligned}$$
and
$$\begin{aligned}& \bigl\vert D^{\alpha-1}(Tu) (t)-D^{\alpha-1}(Tv) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s) \bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s)\bigr)\bigr\vert \,ds \\& \quad\quad{} + \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\& \quad\quad{} +\sum_{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)-I_{i}\bigl(v(t_{i})\bigr) \bigr\vert +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)-g \bigl(s,v(s)\bigr)\bigr\vert \,ds \\& \quad \leq \Biggl[2 \int_{0}^{1}\bigl[\bigl\vert \psi_{1}(s) \bigr\vert +\bigl\vert \psi_{2}(s)\bigr\vert +\bigl\vert \psi_{3}(s)\bigr\vert \bigr]\,ds +\sum_{k=1}^{m}L_{k}+ \Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi (s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}} \\& \quad = \rho \Vert u-v\Vert _{\mathit {PC}^{1}}, \end{aligned}$$
which indicates \(\Vert Tu-Tv\Vert _{\mathit {PC}^{1}}\leq\rho \Vert u-v\Vert _{\mathit {PC}^{1}}\), where \(\rho=2\int_{0}^{1}[\vert \psi_{1}(s)\vert +\vert \psi _{2}(s)\vert +\vert \psi_{3}(s)\vert ]\,ds +\sum_{k=1}^{m}L_{k}+\Gamma(\alpha-1)\int_{0}^{\eta} \vert \psi (s)\vert \,ds<1\). Therefore T is a contraction mapping on \(\mathit {PC}^{1}(J,\mathbb{R})\). According to the contraction mapping principle, we conclude that T has a unique fixed point \(u(t)\in \mathit {PC}^{1}(J,\mathbb{R})\), which is the unique solution of BVP (1.1). The proof is complete. □

Now we give a simple and easily verifiable result as follows.

Corollary 3.1

Assume that the conditions \((B_{2})\), \((B_{3})\), and \((B'_{1})\) hold.
\((B'_{1})\)
\(f\in C(J\times\mathbb{R}^{3}, \mathbb{R})\), for all \((t,u,v,w), (t, \bar{u}, \bar{v}, \bar{w})\in J\times\mathbb{R}^{3}\), there exist some constants \(N_{i}>0\) (\(i=1,2,3\)) such that
$$\begin{aligned} \bigl\vert f(t,u,v,w)-f(t,\bar{u},\bar{v},\bar{w})\bigr\vert \leq N_{1}\vert u-\bar{u}\vert +N_{2}\vert v-\bar{v}\vert +N_{3}\vert w-\bar{w}\vert . \end{aligned}$$
If \(\rho=\frac{\alpha(N_{1}+N_{2}+N_{3})}{\alpha-1}+\sum_{k=1}^{m}L_{k} +\Gamma(\alpha-1)\int_{0}^{\eta} \vert \psi(s)\vert \,ds<1\), then BVP (1.1) has a unique solution on J.

Proof

Let \(M=\sup_{t\in J}\vert f(t,0,0,0)\vert + \sup_{t\in J}\vert g(t,0)\vert \) and \(B_{r}=\{u\in \mathit {PC}(J,\mathbb{R}):\Vert u\Vert _{\mathit {PC}^{1}}\leq r\}\), where \(r\geq \frac{1}{1-\rho} [ (\frac{\alpha}{\alpha-1}+ \Gamma(\alpha-1)\eta )M+\sum_{k=1}^{m} \vert I_{k}(0)\vert ]\). Define an operator \(T:B_{r}\rightarrow \mathit {PC}(J,\mathbb{R})\) as (3.2). It is obvious that T is jointly continuous and maps bounded subsets of \(J \times\mathbb{R}\) to bounded subsets of \(\mathbb{R}\). Similarly, we will prove Corollary 3.1 through the following two steps.

Step 1. We show that \(T(B_{r})\subset B_{r}\). In fact, noting that \(u(0)=u'(0)=D^{\alpha-1}u(0)=0\), we have, for \(u\in B_{r}\), \(t\in J=[0,1]\),
$$\begin{aligned}& \bigl\vert (Tu) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds + \frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{} +\frac{t^{\alpha-1}}{\Gamma(\alpha)} \biggl[ \int _{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)\bigr\vert \,ds +\sum _{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert \biggr] \\& \quad \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \bigl[\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{} +\frac{t^{\alpha-1}}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha -2} \bigl[\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{} +\frac{t^{\alpha-1}}{\Gamma(\alpha)}\sum_{t\leq t_{i}} \bigl[\bigl\vert I_{i}\bigl(u(t_{i})\bigr)-I_{i}\bigl(u(0)\bigr) \bigr\vert +\bigl\vert I_{i}\bigl(u(0)\bigr)\bigr\vert \bigr] \\& \quad\quad{} +\frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta} \bigl[\bigl\vert g\bigl(s,u(s) \bigr)-g(s,0)\bigr\vert +\bigl\vert g(s,0)\bigr\vert \bigr]\,ds \\& \quad \leq \frac{2[(N_{1}+N_{2}+N_{3})r+M]}{\Gamma(\alpha+1)} +\frac{1}{\Gamma(\alpha)}\sum_{k=1}^{m} \bigl[L_{k}r +\bigl\vert I_{k}(0)\bigr\vert \bigr] + \frac{r}{\alpha-1} \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds+ \frac{\eta M}{\alpha-1} \\& \quad = \Biggl[\frac{2(N_{1}+N_{2}+N_{3})}{\Gamma(\alpha+1)} +\frac{1}{\Gamma(\alpha)}\sum_{k=1}^{m}L_{k} +\frac{1}{\alpha-1} \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]r \\& \quad\quad{} + \biggl[\frac{2}{\Gamma(\alpha+1)}+\frac{\eta}{\alpha -1} \biggr]M +\frac{1}{\Gamma(\alpha)}\sum _{k=1}^{m}\bigl\vert I_{k}(0) \bigr\vert \\& \quad \leq \Biggl[\frac{\alpha(N_{1}+N_{2}+N_{3})}{\alpha-1} +\sum_{k=1}^{m}L_{k} +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi (s)\bigr\vert \,ds \Biggr]r \\& \quad\quad{} + \biggl[\frac{\alpha}{\alpha-1}+\Gamma(\alpha-1)\eta \biggr]M +\sum _{k=1}^{m}\bigl\vert I_{k}(0)\bigr\vert \\& \quad \leq \rho r+(1-\rho)r=r, \\& \bigl\vert (Tu)'(t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac {(t-s)^{\alpha-2}}{\Gamma(\alpha-1)}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds +t^{\alpha-2} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{}+\frac{t^{\alpha-2}}{\Gamma(\alpha-1)} \biggl[ \int _{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)\bigr\vert \,ds +\sum _{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert \biggr] \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-2}}{\Gamma(\alpha -1)} \bigl[\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{} + \int_{0}^{1}\frac{[t(1-s)]^{\alpha-2}}{\Gamma(\alpha -1)} \bigl[\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{}+\frac{t^{\alpha-2}}{\Gamma(\alpha-1)}\sum_{t\leq t_{i}} \bigl[\bigl\vert I_{i}\bigl(u(t_{i})\bigr)-I_{i}\bigl(u(0)\bigr) \bigr\vert +\bigl\vert I_{i}\bigl(u(0)\bigr)\bigr\vert \bigr] \\& \quad\quad{}+t^{\alpha-2} \int_{0}^{\eta} \bigl[\bigl\vert g\bigl(s,u(s) \bigr)-g(s,0)\bigr\vert +\bigl\vert g(s,0)\bigr\vert \bigr]\,ds \\& \quad \leq \frac{2[(N_{1}+N_{2}+N_{3})r+M]}{\Gamma(\alpha)} +\frac{1}{\Gamma(\alpha-1)}\sum_{k=1}^{m} \bigl[L_{k}r+\bigl\vert I_{k}(0)\bigr\vert \bigr] +r \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds+ \eta M \\& \quad = \Biggl[\frac{2(N_{1}+N_{2}+N_{3})}{\Gamma(\alpha)} +\frac{1}{\Gamma(\alpha-1)}\sum _{k=1}^{m}L_{k} + \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]r \\& \quad\quad{}+ \biggl[\frac{2}{\Gamma(\alpha)}+\eta \biggr]M +\frac{1}{\Gamma(\alpha-1)}\sum _{k=1}^{m}\bigl\vert I_{k}(0)\bigr\vert \\& \quad \leq \Biggl[\frac{\alpha(N_{1}+N_{2}+N_{3})}{\alpha-1} +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds+ \sum_{k=1}^{m}L_{k} \Biggr]r \\& \quad\quad{}+ \biggl[\frac{\alpha}{\alpha-1}+\Gamma(\alpha-1)\eta \biggr]M +\sum _{k=1}^{m}\bigl\vert I_{k}(0)\bigr\vert \\& \quad \leq \rho r+(1-\rho)r=r, \end{aligned}$$
and
$$\begin{aligned}& \bigl\vert D^{\alpha-1}(Tu) (t)\bigr\vert \\& \quad \leq \int _{0}^{t}\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s) \bigr)\bigr\vert \,ds + \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{}+\sum_{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert +\Gamma(\alpha-1) \int _{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\& \quad \leq \int_{0}^{t} \bigl[\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)-f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{} + \int_{0}^{1}(1-s)^{\alpha-2} \bigl[\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)-f(s,0,0,0)\bigr\vert +\bigl\vert f(s,0,0,0)\bigr\vert \bigr]\,ds \\& \quad\quad{}+\sum_{t\leq t_{i}} \bigl[\bigl\vert I_{i} \bigl(u(t_{i})\bigr)-I_{i}\bigl(u(0)\bigr)\bigr\vert + \bigl\vert I_{i}\bigl(u(0)\bigr)\bigr\vert \bigr] \\& \quad\quad{} +\Gamma(\alpha-1) \int_{0}^{\eta} \bigl[\bigl\vert g\bigl(s,u(s) \bigr)-g(s,0)\bigr\vert +\bigl\vert g(s,0)\bigr\vert \bigr]\,ds \\& \quad \leq r\sum_{i=0}^{3}N_{i}+M+ \frac{r\sum_{i=0}^{3}N_{i}+M}{\alpha-1} +\sum_{k=1}^{m} \bigl[L_{k}r+\bigl\vert I_{k}(0)\bigr\vert \bigr] \\ & \quad\quad{} +\Gamma( \alpha-1) \biggl[r \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds+ \eta M \biggr] \\ & \quad = \Biggl[\frac{\alpha(N_{1}+N_{2}+N_{3})}{\alpha-1} +\sum_{k=1}^{m}L_{k}+ \Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi (s)\bigr\vert \,ds \Biggr]r \\ & \quad\quad{} + \biggl[\frac{\alpha}{\alpha-1}+\Gamma(\alpha-1)\eta \biggr]M +\sum _{k=1}^{m}\bigl\vert I_{k}(0)\bigr\vert \\ & \quad \leq \rho r+(1-\rho)r=r, \end{aligned}$$
which imply that \(\Vert Tu\Vert _{\mathit {PC}^{1}}\leq r\), that is, \(T(B_{r})\subset B_{r}\).
Step 2. We show that T is a contraction mapping. Indeed, for all \(u, v\in B_{r}\), for each \(t\in J=[0,1]\), we obtain
$$\begin{aligned}& \bigl\vert (Tu) (t)-(Tv) (t)\bigr\vert \\ & \quad \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\ & \quad\quad{} +\frac{t^{\alpha-1}}{\Gamma(\alpha)} \int_{0}^{1}(1-s)^{\alpha -2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\ & \quad\quad{} +\frac{t^{\alpha-1}}{\Gamma(\alpha)}\sum_{t\leq t_{i}}\bigl\vert I_{i}\bigl(u(t_{i})\bigr)-I_{i} \bigl(v(t_{i})\bigr)\bigr\vert +\frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)-g \bigl(s,v(s)\bigr)\bigr\vert \,ds \\ & \quad \leq \Biggl[\frac{N_{1}+N_{2}+N_{3}}{\Gamma(\alpha+1)}+\frac {N_{1}+N_{2}+N_{3}}{\Gamma(\alpha+1)} +\frac{1}{\Gamma(\alpha)}\sum _{k=1}^{m}L_{k} +\frac{1}{\alpha-1} \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}} \\ & \quad \leq \Biggl[\frac{\alpha(N_{1}+N_{2}+N_{3})}{\alpha-1} +\sum_{k=1}^{m}L_{k} +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}} =\rho \Vert u-v\Vert _{\mathit {PC}^{1}}, \\ & \bigl\vert (Tu)'(t)-(Tv)'(t)\bigr\vert \\ & \quad \leq \int_{0}^{t}\frac {(t-s)^{\alpha-2}}{\Gamma(\alpha-1)}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\ & \quad\quad{} +\frac{t^{\alpha-2}}{\Gamma(\alpha-1)} \int _{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\ & \quad\quad{} +\frac{t^{\alpha-2}}{\Gamma(\alpha-1)}\sum_{t\leq t_{i}}\bigl\vert I_{i}\bigl(u(t_{i})\bigr)-I_{i} \bigl(v(t_{i})\bigr)\bigr\vert +t^{\alpha-2} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)-g \bigl(s,v(s)\bigr)\bigr\vert \,ds \\ & \quad \leq \Biggl[\frac{2(N_{1}+N_{2}+N_{3})}{\Gamma(\alpha)} +\frac{1}{\Gamma(\alpha-1)}\sum _{k=1}^{m}L_{k} + \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}} \\ & \quad \leq \Biggl[\frac{\alpha(N_{1}+N_{2}+N_{3})}{\alpha-1} +\sum_{k=1}^{m}L_{k}+ \Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}}=\rho \Vert u-v\Vert _{\mathit {PC}^{1}}, \end{aligned}$$
and
$$\begin{aligned}& \bigl\vert D^{\alpha-1}(Tu) (t)-D^{\alpha-1}(Tv) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha-1}u(s) \bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s)\bigr)\bigr\vert \,ds \\& \quad\quad{} + \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr) -f\bigl(s,v(s),v'(s),D^{\alpha-1}v(s) \bigr)\bigr\vert \,ds \\& \quad\quad{}+\sum_{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)-I_{i}\bigl(v(t_{i})\bigr) \bigr\vert +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)-g \bigl(s,v(s)\bigr)\bigr\vert \,ds \\& \quad \leq \Biggl[N_{1}+N_{2}+N_{3}+\frac{N_{1}+N_{2}+N_{3}}{\alpha-1} +\sum_{k=1}^{m}L_{k} +\Gamma( \alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}} \\& \quad = \Biggl[\frac{\alpha(N_{1}+N_{2}+N_{3})}{\alpha-1} +\sum_{k=1}^{m}L_{k}+ \Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr]\Vert u-v\Vert _{\mathit {PC}^{1}}=\rho \Vert u-v\Vert _{\mathit {PC}^{1}}, \end{aligned}$$
which indicates \(\Vert Tu-Tv\Vert _{\mathit {PC}^{1}}\leq\rho \Vert u-v\Vert _{\mathit {PC}^{1}}\), where \(\rho=\frac{\alpha(N_{1}+N_{2}+N_{3})}{\alpha-1} +\sum_{k=1}^{m}L_{k}+ \Gamma(\alpha-1)\int_{0}^{\eta} \vert \psi(s)\vert \,ds<1\). Therefore T is a contraction mapping on \(\mathit {PC}^{1}(J,\mathbb{R})\). According to the contraction mapping principle, we conclude that T has a unique fixed point \(u(t)\in \mathit {PC}^{1}(J,\mathbb{R})\), which is the unique solution of BVP (1.1). The proof is complete. □

For some fixed \(r>0\), considering BVP (1.1) on the cylinder \(\mathcal{R}=[0,1]\times B(0,r)\), we obtain the following theorem.

Theorem 3.2

Assume that conditions \((B_{4})\)-\((B_{6})\) hold. Then BVP (1.1) has at least one solution in J, provided that \(\varrho=\sum_{k=1}^{m}L_{k} +\Gamma(\alpha-1) \int_{0}^{\eta} \vert \psi(s)\vert \,ds<1\).
\((B_{4})\)

\(f\in C( J\times\mathbb{R}^{3}, \mathbb{R})\), for all \((t,u,u',D^{\alpha-1}u)\in J\times\mathbb{R}^{3}\), there exist \(p\in(0,1)\), \(h\in L_{1/p}([0,1], \mathbb{R^{+}})\) such that \(\vert f(t,u,u',D^{\alpha-1}u)\vert \leq h(t)\), where \(L_{1/p}([0,1], \mathbb{R^{+}})\) denotes space \(1/p\)-Lebesgue measurable functions from \([0,1]\) to \(\mathbb{R^{+}}\) with the norm \(\Vert v\Vert _{1/p}= (\int_{0}^{1}\vert v(s)\vert ^{\frac{1}{p}}\,ds )^{p}\), for \(v\in L_{1/p}([0,1], \mathbb{R^{+}})\).

\((B_{5})\)

\(I_{k}\in C(\mathbb{R},\mathbb{R})\), for all \(u\in \mathbb{R}\), there exist some constants \(L_{k}>0\) such that \(\vert I_{k}(u)\vert < L_{k}\vert u\vert \), \(k=1,2,\ldots,m\).

\((B_{6})\)

\(g\in C(J,\mathbb{R})\), for all \((t,u)\in(J, \mathbb{R})\), there exists \(\psi\in L[0,1]\) such that \(\vert g(t,u)\vert \leq \vert \psi(t)\vert \vert u\vert \).

Proof

Let \(B_{\lambda}\) be a closed bounded convex subset of \(\mathit {PC}^{1}([0, 1],\mathbb{R})\) defined by \(B_{\lambda}=\{u:\Vert u\Vert \leq\lambda\}\), \(\lambda\geq \frac{A}{1-\varrho}\), \(A= [1+ (\frac{1-p}{\alpha-p-1} )^{1-p} ]\Vert h\Vert _{1/p}\).

Define the operator \(T: B_{\lambda}\rightarrow \mathit {PC}^{1}([0, 1],\mathbb {R})\) as (3.2). For \(u\in\partial B_{\lambda}\), we have
$$\begin{aligned}& \bigl\vert (Tu) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds + \frac{t^{\alpha-1}}{\alpha-1} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{}+\frac{t^{\alpha-1}}{\Gamma(\alpha)} \biggl[ \int _{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)\bigr\vert \,ds +\sum _{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert \biggr] \\& \quad \leq \int_{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds + \int_{0}^{1}\frac{(1-s)^{\alpha-2}}{\Gamma(\alpha)}h(s)\,ds \\& \quad\quad{} +\frac{1}{\Gamma(\alpha)}\sum_{t\leq t_{i}}L_{i}\bigl\vert u(t_{i})\bigr\vert +\frac{1}{\alpha-1} \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \bigl\vert u(s)\bigr\vert \,ds \\& \quad \leq \frac{1}{\Gamma(\alpha)} \biggl( \int_{0}^{1}(1-s)^{\frac {\alpha-1}{1-p}}\,ds \biggr)^{1-p} \biggl( \int_{0}^{1}\bigl(h(s)\bigr)^{\frac {1}{p}}\,ds \biggr)^{p} \\& \quad\quad{} +\frac{1}{\Gamma(\alpha)} \biggl( \int_{0}^{1}(1-s)^{\frac{\alpha-2}{1-p}}\,ds \biggr)^{1-p} \biggl( \int_{0}^{1}\bigl(h(s)\bigr)^{\frac{1}{p}}\,ds \biggr)^{p} \\& \quad\quad{} +\frac{1}{\Gamma(\alpha)}\sum_{k=1}^{m}L_{k} \Vert u\Vert _{\mathit {PC}^{1}} +\frac{\Vert u\Vert _{\mathit {PC}^{1}}}{\alpha-1} \int_{0}^{\eta }\bigl\vert \psi(s)\bigr\vert \,ds \\& \quad \leq \biggl[ \biggl(\frac{1-p}{\alpha-p} \biggr)^{1-p}+ \biggl( \frac{1-p}{\alpha-p-1} \biggr)^{1-p} \biggr]\frac{\Vert h\Vert _{1/p}}{\Gamma(\alpha)} +\lambda \Biggl[\frac{1}{\Gamma(\alpha)}\sum_{k=1}^{m}L_{k} +\frac{1}{\alpha-1} \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr] \\& \quad \leq \biggl[1+ \biggl(\frac{1-p}{\alpha-p-1} \biggr)^{1-p} \biggr]\Vert h\Vert _{1/p} +\lambda \Biggl[\sum_{k=1}^{m}L_{k} +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr] =A+\lambda\varrho\leq\lambda, \\& \bigl\vert (Tu)'(t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-2}}{\Gamma(\alpha-1)}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha-1}u(s)\bigr)\bigr\vert \,ds +t^{\alpha-2} \int_{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{}+\frac{t^{\alpha-2}}{\Gamma(\alpha-1)} \biggl[ \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)\bigr\vert \,ds +\sum _{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert \biggr] \\& \quad \leq \int_{0}^{1}\frac{(1-s)^{\alpha-2}}{\Gamma(\alpha-1)}h(s)\,ds + \int_{0}^{1}\frac{(1-s)^{\alpha-2}}{\Gamma(\alpha-1)}h(s)\,ds \\& \quad\quad{}+\frac{1}{\Gamma(\alpha-1)}\sum_{t\leq t_{i}}L_{i}\bigl\vert u(t_{i})\bigr\vert + \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \bigl\vert u(s)\bigr\vert \,ds \\& \quad \leq \frac{\alpha-1}{\Gamma(\alpha)} \biggl( \int _{0}^{1}(1-s)^{\frac{\alpha-2}{1-p}}\,ds \biggr)^{1-p} \biggl( \int _{0}^{1}\bigl(h(s)\bigr)^{\frac{1}{p}}\,ds \biggr)^{p} \\& \quad\quad{}+\frac{\alpha-1}{\Gamma(\alpha)} \biggl( \int_{0}^{1}(1-s)^{\frac{\alpha-2}{1-p}}\,ds \biggr)^{1-p} \biggl( \int_{0}^{1}\bigl(h(s)\bigr)^{\frac{1}{p}}\,ds \biggr)^{p} \\& \quad\quad{} +\frac{\alpha-1}{\Gamma(\alpha)}\sum_{k=1}^{m}L_{k} \Vert u\Vert _{\mathit {PC}^{1}} +\Vert u\Vert _{\mathit {PC}^{1}} \int_{0}^{\eta}\bigl\vert \psi (s)\bigr\vert \,ds \\& \quad \leq 2(\alpha-1) \biggl(\frac{1-p}{\alpha-p-1} \biggr)^{1-p} \frac {\Vert h\Vert _{1/p}}{\Gamma(\alpha)} +\lambda \Biggl[\frac{\alpha-1}{\Gamma(\alpha)}\sum _{k=1}^{m}L_{k} + \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr] \\& \quad \leq \biggl[1+ \biggl(\frac{1-p}{\alpha-p-1} \biggr)^{1-p} \biggr]\Vert h\Vert _{1/p} +\lambda \Biggl[\sum_{k=1}^{m}L_{k} +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr] =A+\lambda\varrho\leq\lambda, \end{aligned}$$
and
$$\begin{aligned}& \bigl\vert D^{\alpha-1}(Tu) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\bigl\vert f\bigl(s,u(s),u'(s),D^{\alpha -1}u(s) \bigr)\bigr\vert \,ds + \int_{0}^{1}(1-s)^{\alpha-2}\bigl\vert f \bigl(s,u(s),u'(s),D^{\alpha -1}u(s)\bigr)\bigr\vert \,ds \\& \quad\quad{}+ \sum_{t\leq t_{i}}\bigl\vert I_{i} \bigl(u(t_{i})\bigr)\bigr\vert +\Gamma(\alpha-1) \int _{0}^{\eta}\bigl\vert g\bigl(s,u(s)\bigr)\bigr\vert \,ds \\& \quad \leq \int_{0}^{1}h(s)\,ds + \int_{0}^{1}(1-s)^{\alpha-2}h(s)\,ds+\sum _{t\leq t_{i}}L_{i}\bigl\vert u(t_{i}) \bigr\vert +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \bigl\vert u(s)\bigr\vert \,ds \\& \quad \leq \biggl( \int_{0}^{1}\bigl(h(s)\bigr)^{\frac{1}{p}}\,ds \biggr)^{p} + \biggl( \int_{0}^{1}(1-s)^{\frac{\alpha-2}{1-p}}\,ds \biggr)^{1-p} \biggl( \int_{0}^{1}\bigl(h(s)\bigr)^{\frac{1}{p}}\,ds \biggr)^{p} +\sum_{k=1}^{m}L_{k} \Vert u\Vert _{\mathit {PC}^{1}} \\& \quad\quad{} +\Gamma(\alpha-1)\Vert u\Vert _{\mathit {PC}^{1}} \int _{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \\& \quad = \biggl[1+ \biggl(\frac{1-p}{\alpha-p-1} \biggr)^{1-p} \biggr]\Vert h \Vert _{1/p} +\lambda \Biggl[\sum_{k=1}^{m}L_{k} +\Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi(s)\bigr\vert \,ds \Biggr] =A+\lambda\varrho\leq\lambda. \end{aligned}$$
Therefore, \(T(B_{\lambda})\subset B_{\lambda}\). By Lemma 3.2, we see that T: \(B_{\lambda}\rightarrow B_{\lambda}\) is completely continuous. Thus BVP (1.1) has at least one solution by Lemma 2.3. The proof is complete. □

4 Illustrative example

As an application of the main results, we consider the following impulsive fractional differential equation with integral boundary conditions:
$$ \textstyle\begin{cases} {}_{t_{k}}D_{t}^{\frac{5}{2}}u(t)= f(t,u,u',D^{\frac{3}{2}}u), \quad t\neq t_{k}, \\ \Delta D^{\frac{3}{2}}u(t_{k})= I_{k}(u(t_{k}), \quad k=1,\ldots,m,\\ u(0)=u'(0)=0, \quad\quad u'(1)=\int_{0}^{\eta}g(s,u(s))\,ds, \end{cases} $$
(4.1)
here \(t\in J=[0,1]\), \(t_{k}=1-\frac{1}{2^{k}}\) (\(k=1,2,\ldots,m\)), \(\alpha=\frac{5}{2}\), \(\eta=\frac{1}{2}\).

Case 1

Let
$$\begin{aligned}& \begin{aligned} f\bigl(t,u,u',D^{\frac{3}{2}}u\bigr)&=\frac{t^{4}u(t)}{10+h_{1}(u(t),u'(t),D^{\frac {3}{2}}u(t))} + \frac{e^{-t}D^{\frac{3}{2}}u(t)}{20+h_{3}(u(t),u'(t),D^{\frac{3}{2}}u(t))} \\ &\quad{} +\frac{u'(t)}{(1+t)^{3}(15+h_{2}(u(t),u'(t),D^{\frac{3}{2}}u(t))}, \end{aligned} \\& I_{k}\bigl(u(t_{k})\bigr)=\frac{\vert u(t_{k})\vert }{5^{k}+\vert u(t_{k})\vert }+1, \quad\quad g(t,u)= \frac{t^{2}u^{2}(t)}{1+u^{2}(t)}, \end{aligned}$$
where \(h_{i}(u,u',D^{\frac{3}{2}}u)\geq 0\) (\(i=1,2,3\)). By simple computation, we have \(\psi_{1}(s)=\frac{s^{4}}{10}\), \(\psi_{2}(s)=\frac{1}{15(1+s)^{3}}\), \(\psi_{3}(s)=\frac{1}{20e^{t}}\), \(L_{k}=\frac{1}{5^{k}}\), \(\psi(s)=2s^{2}\),
$$\begin{aligned} \rho &=2 \int_{0}^{1}\bigl[\bigl\vert \psi_{1}(s) \bigr\vert +\bigl\vert \psi _{2}(s)\bigr\vert +\bigl\vert \psi_{3}(s)\bigr\vert \bigr]\,ds +\sum_{k=1}^{m}L_{k}+ \Gamma(\alpha-1) \int_{0}^{\eta}\bigl\vert \psi (s)\bigr\vert \,ds \\ &=\frac{1}{25}+\frac{1}{20}+\frac{1-e^{-1}}{10}+\frac {1}{4} \biggl(1-\frac{1}{5^{m+1}}\biggr)+\frac{\Gamma(\frac{3}{2})}{12} \\ &< \frac{264+25\sqrt{\pi}}{600}< 1. \end{aligned}$$
Thus, all the assumptions of Theorem 3.1 are satisfied. Hence BVP (4.1) has a unique solution on \(J=[0,1]\).

Case 2

Take
$$\begin{aligned} f\bigl(t,u,u',D^{\frac{3}{2}}u\bigr)=\frac{t^{2}(u+u+D^{\frac {3}{2}}u)^{2}}{1+(u+u+D^{\frac{3}{2}}u)^{2}}. \end{aligned}$$
\(I_{k}(u(t_{k}))\) and \(g(t,u)\) are the same as Case 1. It is clear that \(\vert f(t,u,u',D^{\frac{3}{2}}u)\vert \leq t^{2}\triangleq h(t)\) and \(\varrho=\sum_{k=1}^{m}L_{k}+\Gamma(\alpha-1)\int_{0}^{\eta} \vert \psi(s)\vert \,ds<\frac{6+\sqrt{\pi}}{24}<1\). Thus, BVP (4.1) has at least one solution in \(J=[0,1]\) by Theorem 3.2.

5 Conclusions

Compared with previous papers involving impulsive fractional order differential equations, the impulse of our boundary value problem (1.1) is related to the fractional order derivative, namely, \(\Delta D^{\alpha-1}u(t_{k})= I_{k}(u(t_{k}))\). It is difficult and challenging to find the Green function of (1.1). Our results are new and interesting. Our methods can be used to study the existence of positive solutions for the high order or multiple-point boundary value problems of nonlinear fractional differential equation with the impulses involving the fractional order derivative. However, there exist some difficulties and complexities to address the structure of the Green function for these boundary value problems.

Declarations

Acknowledgements

The authors would like to thank the anonymous referees for their useful and valuable suggestions. This work is supported by the National Natural Sciences Foundation of Peoples Republic of China under Grant (No. 11161025; No. 11661047), and the Yunnan Province natural scientific research fund project (No. 2011FZ058).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Applied Mathematics, Kunming University of Science and Technology

References

  1. Kilbas, AA, Srivastava, H, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) View ArticleMATHGoogle Scholar
  2. Podlubny, I: Fractional Differential Equation. Academic Press, San Diego (1999) MATHGoogle Scholar
  3. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993) MATHGoogle Scholar
  4. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993) MATHGoogle Scholar
  5. Tarasov, VE: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010) View ArticleMATHGoogle Scholar
  6. Diethelm, K: The Analysis of Fractional Differential Equations. Springer, Berlin (2010) View ArticleMATHGoogle Scholar
  7. Feng, M, Ge, W: Existence results for a class of nth order m-point boundary value problems in Banach spaces. Appl. Math. Lett. 22, 1303-1308 (2009) MathSciNetView ArticleMATHGoogle Scholar
  8. Chang, Y, Nieto, JJ: Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 49, 605-609 (2009) MathSciNetView ArticleMATHGoogle Scholar
  9. Goodrich, C: Existence of a positive solution to a class of fractional differential equations. Comput. Math. Appl. 59, 3489-3499 (2010) MathSciNetView ArticleMATHGoogle Scholar
  10. Bai, Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916-924 (2010) MathSciNetView ArticleMATHGoogle Scholar
  11. Zhang, X, Liu, L, Wu, Y: Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Math. Comput. Model. 55(3), 1263-1274 (2012) MathSciNetView ArticleMATHGoogle Scholar
  12. Li, C, Luo, X, Zhou, Y: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59, 1363-1375 (2010) MathSciNetView ArticleMATHGoogle Scholar
  13. Zhang, S: Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 59, 1300-1309 (2010) MathSciNetView ArticleMATHGoogle Scholar
  14. Wang, Y, Liu, Y, Wu, Y: Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity. Nonlinear Anal., Theory Methods Appl. 74(17), 6434-6441 (2011) MathSciNetView ArticleMATHGoogle Scholar
  15. Goodrich, C: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23, 1050-1055 (2010) MathSciNetView ArticleMATHGoogle Scholar
  16. Salem, H: On the existence of continuous solutions for a singular system of nonlinear fractional differential equations. Appl. Math. Comput. 198, 445-452 (2008) MathSciNetMATHGoogle Scholar
  17. Jafari, H, Gejji, V: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput. 180, 700-706 (2006) MathSciNetMATHGoogle Scholar
  18. Jiang, D, Yuan, C: The positive properties of the green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. TMA 72, 710-719 (2010) MathSciNetView ArticleMATHGoogle Scholar
  19. Zhao, KH, Gong, P: Existence of positive solutions for a class of higher-order Caputo fractional differential equation. Qual. Theory Dyn. Syst. 14(1), 157-171 (2015) MathSciNetView ArticleMATHGoogle Scholar
  20. Zhao, KH, Gong, P: Positive solutions of Riemann-Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential. Adv. Differ. Equ. 2014, 254 (2014) MathSciNetView ArticleMATHGoogle Scholar
  21. Zhao, KH, Gong, P: Positive solutions of m-point multi-term fractional integral BVP involving time-delay for fractional differential equations. Bound. Value Probl. 2015, 19 (2015) MathSciNetView ArticleMATHGoogle Scholar
  22. Zhao, KH, Gong, P: Existence and nonexistence of positive solutions for a singular higher-order nonlinear fractional differential equation. WSEAS Trans. Math. 14, 87-96 (2015) Google Scholar
  23. Zhao, KH, Wang, K: Existence of solutions for the delayed nonlinear fractional functional differential equations with three-point integral boundary value conditions. Adv. Differ. Equ. 2016, 284 (2016) MathSciNetView ArticleGoogle Scholar
  24. Gao, Y, Chen, P: Existence of solutions for a class of nonlinear higher-order fractional differential equation with fractional nonlocal boundary condition. Adv. Differ. Equ. 2016, 314 (2016) MathSciNetView ArticleGoogle Scholar
  25. Rong, J, Bai, C: Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions. Adv. Differ. Equ. 2015, 82 (2015) MathSciNetView ArticleMATHGoogle Scholar
  26. Ahmad, B, Alsaedi, A: Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions. Bound. Value Probl. 2012, 124 (2012) MathSciNetView ArticleMATHGoogle Scholar
  27. Li, RG: Existence of solutions for nonlinear singular fractional differential equations with fractional derivative condition. Adv. Differ. Equ. 2014, 292 (2014) MathSciNetView ArticleMATHGoogle Scholar
  28. Benchohra, M, Henderson, J, Ntouyas, SK: Impulsive Differential Equations and Inclusions. Hindawi Publ. Corp., New York (2006) View ArticleMATHGoogle Scholar
  29. Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989) View ArticleMATHGoogle Scholar
  30. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995) View ArticleMATHGoogle Scholar
  31. Bai, C: Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative. J. Math. Anal. Appl. 384, 211-231 (2011) MathSciNetView ArticleMATHGoogle Scholar
  32. Anguraj, A, Karthikeyan, P, Rivero, M, Trujillo, JJ: On new existence results for fractional integro-differential equations with impulsive and integral conditions. Comput. Math. Appl. 66(12), 2587-2594 (2014) MathSciNetView ArticleGoogle Scholar
  33. Cao, J, Chen, H: Impulsive fractional differential equations with nonlinear boundary conditions. Math. Comput. Model. 55(3), 303-311 (2012) MathSciNetView ArticleMATHGoogle Scholar
  34. Wang, G, Ahmad, B, Zhang, L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 74, 792-804 (2011) MathSciNetView ArticleMATHGoogle Scholar
  35. Zhou, Y, Wang, JY: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3050-3060 (2012) MathSciNetView ArticleMATHGoogle Scholar
  36. Mophou, GN: Existence and uniqueness of mild solutions to impulsive fractional differential equations. Nonlinear Anal. TMA 72(3), 1604-1615 (2010) MathSciNetView ArticleMATHGoogle Scholar
  37. Ahmad, B, Sivasundaram, S: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 3, 251-258 (2009) MathSciNetView ArticleMATHGoogle Scholar
  38. Zhao, KH, Gong, P: Positive solutions for impulsive fractional differential equations with generalized periodic boundary value conditions. Adv. Differ. Equ. 2014, 255 (2014) MathSciNetView ArticleMATHGoogle Scholar
  39. Zhao, KH: Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays. Dyn. Syst. 30(2), 208-223 (2015) MathSciNetView ArticleMATHGoogle Scholar
  40. Zhao, KH: Impulsive boundary value problems for two classes of fractional differential equation with two different Caputo fractional derivatives. Mediterr. J. Math. 13, 1033-1050 (2016) MathSciNetView ArticleMATHGoogle Scholar
  41. Fu, X, Bao, XM: Some existence results for nonlinear fractional differential equations with impulsive and fractional integral boundary conditions. Adv. Differ. Equ. 2014, 129 (2014) MathSciNetView ArticleGoogle Scholar
  42. Zhou, J, Feng, MQ: Green’s function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application. Bound. Value Probl. 2014, 69 (2014) MathSciNetView ArticleMATHGoogle Scholar
  43. Zhou, WX, Liu, X, Zhang, JG: Some new existence and uniqueness results of solutions to semilinear impulsive fractional integro-differential equations. Adv. Differ. Equ. 2015, 38 (2015) MathSciNetView ArticleMATHGoogle Scholar
  44. Asawasamrit, S, Ntouyas, SK, Thiramanus, P, Tariboon, J: Periodic boundary value problems for impulsive conformable fractional integro-differential equations. Bound. Value Probl. 2016, 122 (2016) MathSciNetView ArticleMATHGoogle Scholar
  45. Mahmudov, N, Unul, S: On existence of BVP’s for impulsive fractional differential equations. Adv. Differ. Equ. 2017, 15 (2017) MathSciNetView ArticleGoogle Scholar
  46. Hale, JK: Theory of Functional Differential Equations. Springer, New York (1977) View ArticleMATHGoogle Scholar

Copyright

© The Author(s) 2017