Skip to main content

Theory and Modern Applications

Some identities of higher order Barnes-type q-Bernoulli polynomials and higher order Barnes-type q-Euler polynomials

Abstract

In this paper, we consider higher order Barnes-type q-Bernoulli polynomials and numbers and investigate some identities of them. Furthermore, we discuss some identities of higher order Barnes-type q-Euler polynomials and numbers.

1 Introduction

Let p be a given odd prime number. Throughout this paper, we assume that \(\mathbb{Z}_{p}\), \(\mathbb{Q}_{p}\) and \(\mathbb{C}_{p}\) will, respectively, denote the rings of p-adic integers, the fields of p-adic numbers and the completion of algebraic closure of \(\mathbb{Q}-p\). The p-adic norm \(|p|_{p}=\frac{1}{p}\). Let \(\operatorname{UD}(\mathbb{Z}_{p})\) be the space of uniformly differentiable functions on \(\mathbb{Z}_{p}\). For \(f\in \operatorname{UD}(\mathbb{Z}_{p})\), the bosonic p-adic integral on \(\mathbb {Z}_{p}\) is defined as

$$ I_{0}(f)= \int_{\mathbb{Z}_{p}} f(x)\, d \mu_{0}(x) =\lim_{N\rightarrow\infty} \frac{1}{p^{N}} \sum _{x=0}^{p^{N}-1} f(x) \quad (\mbox{see [1--12]}). $$
(1)

It is well known that an integral equation of the bosonic p-adic integral \(I_{0}\) on \(\mathbb{Z}_{p}\),

$$ I_{0}(f_{1})-I_{0}(f)=f'(0), $$
(2)

where \(f_{1}(x)=f(x+1)\). Higher order Bernoulli polynomials are defined by Kim to be

$$ \biggl( \frac{t}{e^{t}-1} \biggr)^{r} e^{xt} = \sum_{n=0}^{\infty}B_{n}^{(r)} (x) \frac{t^{n}}{n!}\quad (\mbox{see [5, 13--16]}). $$
(3)

When \(x=0\), \(B_{n}^{(r)}=B_{n}^{(r)}(0)\) is called higher order Bernoulli numbers. Higher order Barnes-type Bernoulli polynomials are defined by Kim to be

$$ \prod_{i=1}^{r} \biggl( \frac{t}{e^{a_{i}t}-1} \biggr)^{r} e^{xt} = \sum _{n=0}^{\infty}B_{n}^{(r)} (x|a_{1}, \ldots, a_{r}) \frac{t^{n}}{n!}\quad (\mbox{see [11--15, 17--21]}). $$
(4)

When \(x=0\), \(B_{n}^{(r)}(a_{1}, \ldots, a_{r})=B_{n}^{(r)}(0|a_{1}, \ldots, a_{r})\) is called higher order Barnes-type Bernoulli numbers.

In this paper we consider higher order Barnes-type q-Bernoulli polynomials and numbers and investigate some identities of them. We also discuss some identities of higher order Barnes-type q-Euler polynomials and numbers.

2 Higher order Barnes-type q-Bernoulli polynomials and numbers

In this section, we assume that \(q\in\mathbb{C}_{p}\) with \(|1-q|_{p}< p^{-\frac{1}{p-1}}\). By (2), if we take \(f(x)=q^{y} e^{(x+y)t}\), then we get

$$ \int_{\mathbb{Z}_{p}} q^{y} e^{(x+y)t} \, d \mu_{0} (y)= \frac{t+ \log q}{qe^{t}-1}e^{xt}, $$
(5)

where \(f_{1}(x)=f(x+1)\). q-Bernoulli polynomials are defined by Kim to be

$$ \frac{t+ \log q}{qe^{t}-1}e^{xt} = \sum _{n=0}^{\infty}B_{n,q}(x) \frac {t^{n}}{n!}\quad (\mbox{see [13--15, 17, 19--21]}). $$
(6)

When \(x=0\), \(B_{n,q}=B_{n,q}(0)\) is called q-Bernoulli numbers.

Higher order q-Bernoulli polynomials are defined as

$$ \biggl( \frac{t+ \log q}{qe^{t}-1} \biggr)^{r} e^{xt} = \sum_{n=0}^{\infty}B_{n,q}^{(r)}(x) \frac{t^{n}}{n!}. $$
(7)

When \(x=0\), \(B_{n,q}^{(r)}=B_{n,q}^{(r)}(0)\) is called higher order q-Bernoulli numbers.

We define higher order Barnes-type q-Bernoulli polynomials as follows:

$$ \frac{(t+ \log q)^{r}}{ ( q^{a_{1}}e^{a_{1}t}-1 )\cdots ( q^{a_{r}}e^{a_{r}t}-1 )} e^{xt} = \sum _{n=0}^{\infty}B_{n,q}(x|a_{1}, \ldots, a_{r}) \frac{t^{n}}{n!}. $$
(8)

When \(x=0\), \(B_{n,q}(a_{1}, \ldots, a_{r})= B_{n,q}(0|a_{1}, \ldots, a_{r})\) is called higher order Barnes-type q-Bernoulli numbers. By (5), we get

$$\begin{aligned}& \int_{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}t_{r}} e^{(a_{1}x_{1}+\cdots +a_{r}x_{r} +x)t} \, d\mu_{0}(x_{1})\cdots \, d\mu_{0} (x_{r}) \\& \quad = \Biggl( \prod_{i=1}^{r} a_{i} \Biggr) \frac{(t+ \log q)^{r}}{ ( q^{a_{1}}e^{a_{1}t}-1 )\cdots ( q^{a_{r}}e^{a_{r}t}-1 )} e^{xt}. \end{aligned}$$
(9)

By (9) and (8), we get

$$\begin{aligned}& \sum_{n=0}^{\infty}B_{n,q}(x|a_{1}, \ldots, a_{r}) \frac{t^{n}}{n!} \\& \quad =\frac{(t+ \log q)^{r}}{ ( q^{a_{1}}e^{a_{1}t}-1 )\cdots ( q^{a_{r}}e^{a_{r}t}-1 )} e^{xt} \\& \quad = \Biggl( \prod_{i=1}^{r} a_{i} \Biggr)^{-1} \int_{\mathbb{Z}_{p}} \cdots\int _{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots +a_{r}x_{r}}e^{(a_{1}x_{1}+\cdots+a_{r}x_{r}+x)t} \, d \mu_{0}(x_{1})\cdots\, d\mu_{0}(x_{r}) \\& \quad = \sum_{n=0}^{\infty}\Biggl( \Biggl( \prod_{i=1}^{r} a_{i} \Biggr)^{-1} \int_{\mathbb{Z}_{p}} \cdots\int _{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}x_{r}+x} \\& \qquad {}\times(a_{1}x_{1}+ \cdots+a_{r}x_{r}+x)^{n} \, d\mu_{0}(x_{1}) \cdots\, d\mu_{0}(x_{r}) \Biggr) \frac{t^{n}}{n!}. \end{aligned}$$
(10)

From (10), we obtain the following theorem.

Theorem 2.1

Let \(n\in\mathbb{N}\cup\{0\}\). Then we have

$$\begin{aligned}& B_{n,q}(x| a_{1}, \ldots, a_{r}) \\& \quad = \Biggl( \prod_{i=1}^{r} a_{i} \Biggr)^{-1} \int_{\mathbb{Z}_{p}} \cdots\int _{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}x_{r}+x} \\& \qquad {}\times(a_{1}x_{1}+ \cdots+a_{r}x_{r}+x)^{n} \, d\mu_{0}(x_{1}) \cdots\, d\mu_{0}(x_{r}). \end{aligned}$$
(11)

From (1), we have

$$\begin{aligned} \int_{\mathbb{Z}_{p}} f(x)\, d \mu_{0}(x) =& \lim_{N\rightarrow\infty} \frac{1}{p^{N}} \sum_{x=0}^{dp^{N}-1} f(x) \\ =& \frac{1}{d} \lim_{N\rightarrow\infty} \frac{1}{p^{N}} \sum _{a=0}^{d-1} \sum _{x=0}^{p^{N}-1} f(a+dx) \\ =& \frac{1}{d}\sum_{a=0}^{d-1} \int _{\mathbb{Z}_{p}} f(a+dx)\, d \mu_{0}(x). \end{aligned}$$
(12)

By (12), we have

$$\begin{aligned}& \Biggl( \prod_{i=1}^{r} a_{i} \Biggr)^{-1}\int_{\mathbb{Z}_{p}} \cdots\int _{\mathbb{Z}_{p}} q^{a_{1} x_{1}+\cdots+a_{r} x_{r}} e^{(a_{1}d x_{1}+\cdots+a_{r}d x_{r}+x)t} \, d \mu_{0}(x_{1})\cdots\, d\mu_{0}(x_{r}) \\& \quad = \frac{1}{d^{r}}\sum_{l_{1}, \ldots, l_{r}=0}^{d-1} q^{a_{1}l_{1}\cdots+a_{r}l_{r}} \Biggl( \prod_{i=1}^{r} a_{i} \Biggr)^{-1} \int_{\mathbb{Z}_{p}}\cdots\int _{\mathbb{Z}_{p}} q^{a_{1}\, dx_{1}+\cdots+a_{r}\, dx_{r}} \\& \qquad {}\times e^{(a_{1}l_{1}\cdots+a_{r}l_{r}+ x+ a_{1}\, dx_{1}+\cdots+a_{r}\, dx_{r})t} \, d \mu_{0}(x_{1})\cdots\, d\mu_{0}(x_{r}) \\& \quad = \frac{1}{d^{r}}\sum_{l_{1}, \ldots, l_{r}=0}^{d-1} q^{a_{1}l_{1}\cdots+a_{r}l_{r}} \Biggl( \prod_{i=1}^{r} a_{i} \Biggr)^{-1}\int_{\mathbb{Z}_{p}}\cdots\int _{\mathbb{Z}_{p}} q^{a_{1}\, dx_{1}+\cdots+a_{r}\, dx_{r}} \\& \qquad {}\times e^{ ( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r} +x}{d} + a_{1}x_{1}+\cdots+a_{r} x_{r} ) \, dt}\, d \mu_{0}(x_{1})\cdots\, d\mu_{0}(x_{r}) \\& \quad = \sum_{l_{1}, \ldots, l_{r}=0}^{d-1}q^{a_{1}l_{1}\cdots+a_{r}l_{r}} \sum_{n=0}^{\infty}\frac{d^{n}}{d^{r}} \Biggl( \prod_{i=1}^{r} a_{i} \Biggr)^{-1} \int_{\mathbb{Z}_{p}}\cdots\int _{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}x_{r}} \\& \qquad {}\times \biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r} +x}{d} + a_{1}x_{1}+ \cdots+a_{r} x_{r} \biggr)^{n} \, d \mu_{0}(x_{1})\cdots\, d\mu_{0}(x_{r}) \frac{t^{n}}{n!} \\& \quad = \sum_{n=0}^{\infty}d^{n-r} \sum_{l_{1}, \ldots, l_{r}=0}^{d-1} q^{a_{1}x_{1}+\cdots+a_{r}x_{r}} B_{n,q} \biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r} +x}{d} \Big| a_{1}, \ldots, a_{r} \biggr) \frac{t^{n}}{n!}. \end{aligned}$$
(13)

By (8), (9), (11) and (13), we obtain the following theorem.

Theorem 2.2

Let \(n\in\mathbb{N}\cup\{0\}\). Then we have

$$\begin{aligned}& B_{n,q}(x| a_{1}, \ldots, a_{r}) \\& \quad = d^{n-r} \sum_{l_{1}, \ldots, l_{r}=0}^{d-1}q^{a_{1}x_{1}+\cdots+a_{r}x_{r}} B_{n,q} \biggl( \frac{l_{1}x_{1}+\cdots+l_{r}x_{r} +x}{d} \Big| a_{1}, \ldots, a_{r} \biggr). \end{aligned}$$
(14)

It is well known that an integral equation of the bosonic p-adic integral \(I_{0}\) on \(\mathbb{Z}_{p}\) satisfies the following integral equation:

$$ I_{0}(f_{n})-I_{0}(f)= \sum _{i=1}^{n-1} f'(i). $$
(15)

If we take \(f(x_{i})=q^{a_{i}x_{i}}e^{a_{i}x_{i}t}\) for \(i=1, \ldots, r\), then we have

$$ \int_{\mathbb{Z}_{p}} q^{a_{i} x_{i}} e^{a_{i}x_{i} t}\, d\mu_{0}(x_{i}) =\frac{a_{i}(t+\log q)}{q^{a_{i}n}e^{a_{i} nt}-1}\sum _{l=0}^{n-1} q^{a_{i} l}e^{a_{i}lt}. $$
(16)

By (16), we get

$$\begin{aligned}& \Biggl( \prod_{i=1}^{r} a_{i} \Biggr)^{-1} \int_{\mathbb{Z}_{p}} \cdots \int _{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}x_{r}} e^{(a_{1}x_{1}+\cdots+a_{r}x_{r}) t}\, d \mu_{0}(x_{1}) \cdots \, d\mu_{0}(x_{r}) \\& \quad = \frac{(t+\log q)^{r}}{ (q^{a_{1}n}e^{a_{1} nt}-1 ) \cdots (q^{a_{r}n}e^{a_{r} nt}-1 )} \sum_{l_{1}, \ldots, l_{r}=0}^{n-1} q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} e^{(a_{1}l_{1}+\cdots+a_{r}l_{r}) t} \\& \quad = \Biggl( \sum_{k=0}^{\infty}B_{k,q}(na_{1}, \ldots, na_{r}) \frac {t^{k}}{k!} \Biggr)\sum_{l_{1}, \ldots, l_{r}=0}^{n-1} q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} \sum _{j=0}^{\infty}(a_{1}l_{1}+ \cdots+ a_{r}l_{r})^{j} \frac{t^{j}}{j!} \\& \quad = \sum_{l_{1}, \ldots, l_{r}=0}^{n-1} \sum _{k=0}^{\infty}\sum_{j=0}^{\infty}q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} (a_{1}l_{1}+\cdots+ a_{r}l_{r})^{j} B_{k,q}(na_{1}, \ldots, na_{r})\frac{t^{k+j}}{k!j!} \\& \quad = \sum_{m=0}^{\infty}\sum _{l_{1}, \ldots, l_{r}=0}^{n-1} \sum_{j=0}^{m} \binom{m}{j} q^{a_{1}l_{1}+\cdots+a_{r}l_{r}}(a_{1}l_{1}+\cdots+ a_{r}l_{r})^{j} \\& \qquad {}\times B_{m-j,q}(na_{1}, \ldots, na_{r}) \frac{t^{m}}{m!}. \end{aligned}$$
(17)

Thus, by (11) and (17), we obtain the following theorem.

Theorem 2.3

Let \(n\in\mathbb{N}\cup\{0\}\). Then we have

$$\begin{aligned}& B_{n,q}( a_{1}, \ldots, a_{r}) \\& \quad = \sum_{l_{1}, \ldots, l_{r}=0}^{n-1} \sum _{j=0}^{m} \binom{m}{j} q^{a_{1}l_{1}+\cdots+a_{r}l_{r}}(a_{1}l_{1}+ \cdots+ a_{r}l_{r})^{j} B_{m-j,q}(na_{1}, \ldots, na_{r}). \end{aligned}$$
(18)

By (16), we get

$$\begin{aligned}& \Biggl( \prod_{i=1}^{r} a_{i} \Biggr)^{-1} \int_{\mathbb{Z}_{p}} \cdots \int _{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}x_{r}} e^{(a_{1}x_{1}+\cdots+a_{r}x_{r}) t}\, d \mu_{0}(x_{1}) \cdots \, d\mu_{0}(x_{r}) \\& \quad = \frac{(t+\log q)^{r}}{ (q^{a_{1}n}e^{a_{1} nt}-1 ) \cdots (q^{a_{r}n}e^{a_{r} nt}-1 )} \sum_{l_{1}, \ldots, l_{r}=0}^{n-1} q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} e^{(a_{1}l_{1}+\cdots+a_{r}l_{r}) t} \\& \quad = \sum_{l_{1}, \ldots, l_{r}=0}^{n-1}\frac{(t+\log q)^{r}}{ (q^{a_{1}n}e^{a_{1} nt}-1 ) \cdots (q^{a_{r}n}e^{a_{r} nt}-1 )} q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} e^{(a_{1}l_{1}+\cdots+a_{r}l_{r}) t} \\& \quad = \sum_{l_{1}, \ldots, l_{r}=0}^{n-1}q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} \frac{(t+\log q)^{r}}{ (q^{a_{1}n}e^{a_{1} nt}-1 ) \cdots (q^{a_{r}n}e^{a_{r} nt}-1 )} e^{\frac{a_{1}l_{1}+\cdots+a_{r}l_{r}}{n} nt} \\& \quad = \sum_{l_{1}, \ldots, l_{r}=0}^{n-1}q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} \sum_{m=0}^{\infty}B_{m,q^{n}} \biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r}}{n}\Big| a_{1},\ldots, a_{r} \biggr) \frac{n^{m}t^{m}}{m!} \\& \quad = \sum_{m=0}^{\infty}n^{m} \sum_{l_{1}, \ldots, l_{r}=0}^{n-1}q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} B_{m,q^{n}} \biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r}}{n}\Big| a_{1},\ldots, a_{r} \biggr) \frac{t^{m}}{m!}. \end{aligned}$$
(19)

Thus, by (11) and (19), we obtain the following theorem.

Theorem 2.4

Let \(n\in\mathbb{N}\cup\{0\}\). Then we have

$$ B_{m,q}( a_{1}, \ldots, a_{r}) = n^{m} \sum_{l_{1}, \ldots, l_{r}=0}^{n-1}q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} B_{m,q^{n}} \biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r}}{n}\Big| a_{1},\ldots, a_{r} \biggr) . $$
(20)

3 Higher order Barnes-type q-Euler polynomials

Higher Euler polynomials are defined as

$$ \biggl( \frac{2}{e^{t}+1} \biggr)^{r} e^{xt} =\sum_{n=0}^{\infty}E_{n} (x) \frac{t^{n}}{n!} \quad (\mbox{see [17--19, 22--24]}). $$
(21)

When \(x=0\), \(E_{n} =E_{n} (0)\) is called higher Euler numbers. For \(f\in \operatorname{UD}(\mathbb{Z}_{p})\), the fermionic p-adic integral on \(\mathbb {Z}_{p}\) is defined by Kim to be

$$ I_{-1}(f)= \int_{\mathbb{Z}_{p}} f(x) \, d \mu_{-1}(x) =\lim_{N\rightarrow\infty} \sum _{x=0}^{p^{N}-1} f(x) (-1)^{x} \quad (\mbox{see [4]}). $$
(22)

It is well known that an integral equation of the fermionic p-adic integral on \(\mathbb{Z}_{p}\) is

$$ I_{-1}(f_{1})+I_{-1}(f)=2f(0), $$
(23)

where \(f_{1}(x)=f(x+1)\).

Let \(a_{1}, \ldots, a_{r}\in\mathbb{C}_{p}\setminus\{0\}\). Higher order Barnes-type Euler polynomials are defined as

$$ \frac{2^{r}}{ (e^{a_{1}t}+1 )\cdots (e^{a_{r}t}+1 )} e^{xt} = \sum _{n=0}^{\infty}E_{n} (x|a_{1}, \ldots, a_{r}) \frac{t^{n}}{n!}\quad (\mbox{see [18, 19, 23]}). $$
(24)

When \(x=0\), \(E_{n}(a_{1}, \ldots, a_{r})=E_{n}(0|a_{1}, \ldots, a_{r})\) is called higher order Barnes-type Euler numbers. We define higher order Barnes-type q-Euler polynomials as follows:

$$ \frac{2^{r}}{ ( q^{a_{1}}e^{a_{1}t}+1 )\cdots ( q^{a_{r}}e^{a_{r}t}+1 )} e^{xt} = \sum _{n=0}^{\infty}E_{n,q}(x|a_{1}, \ldots, a_{r}) \frac{t^{n}}{n!}. $$
(25)

When \(x=0\), \(E_{n,q}(a_{1}, \ldots, a_{r})= E_{n,q}(0|a_{1}, \ldots, a_{r})\) is called higher order Barnes-type q-Euler numbers.

By (23), if we take \(f(x_{i})=q^{a_{i}x_{i}} e^{a_{i}x_{i}t}\) for \(i=1,\ldots,r\), then we have

$$ \int_{\mathbb{Z}_{p}} q^{a_{i}x_{i}} e^{a_{i}x_{i}t}\, d\mu_{-1}(x_{i})= \frac{2}{q^{a_{i}x_{i}}e^{a_{i}x_{i} t}+1}. $$
(26)

By (26), we get

$$\begin{aligned}& \int_{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}t_{r}} e^{(a_{1}x_{1}+\cdots +a_{r}x_{r} +x)t} \, d\mu_{0}(x_{1})\cdots\, d\mu_{0} (x_{r}) \\& \quad = \frac{2^{r}}{ ( q^{a_{1}}e^{a_{1}t}+1 )\cdots ( q^{a_{r}}e^{a_{r}t}+1 )} e^{xt}. \end{aligned}$$
(27)

By (24) and (27), we get

$$\begin{aligned}& \sum_{n=0}^{\infty}E_{n,q}(x|a_{1}, \ldots, a_{r})\frac{t^{n}}{n!} \\& \quad = \frac{2^{r}}{ ( q^{a_{1}}e^{a_{1}t}+1 )\cdots ( q^{a_{r}}e^{a_{r}t}+1 )} e^{xt} \\& \quad = \int_{\mathbb{Z}_{p}} \cdots\int_{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots +a_{r}x_{r}}e^{(a_{1}x_{1}+\cdots+a_{r}x_{r}+x)t} \, d\mu_{-1}(x_{1})\cdots\, d\mu_{-1}(x_{r}) \\& \quad = \sum_{n=0}^{\infty}\int _{\mathbb{Z}_{p}} \cdots\int_{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}x_{r}} (a_{1}x_{1}+\cdots+a_{r}x_{r}+x)^{n} \, d\mu_{-1}(x_{1})\cdots\, d\mu_{-1}(x_{r}) \frac{t^{n}}{n!}. \end{aligned}$$
(28)

From (28), we obtain the following theorem.

Theorem 3.1

Let \(n\in\mathbb{N}\cup\{0\}\). Then we have

$$\begin{aligned}& E_{n,q}(x| a_{1}, \ldots, a_{r}) \\& \quad = \int_{\mathbb{Z}_{p}} \cdots\int_{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}x_{r}} (a_{1}x_{1}+\cdots+a_{r}x_{r}+x)^{n} \, d\mu_{-1}(x_{1})\cdots\, d\mu_{-1}(x_{r}). \end{aligned}$$
(29)

From (22), we have

$$\begin{aligned} \begin{aligned}[b] \int_{\mathbb{Z}_{p}} f(x) \, d \mu_{-1}(x) &= \lim_{N\rightarrow\infty} \sum_{x=0}^{dp^{N}-1} f(x) (-1)^{x} \\ &= \frac{1}{d} \lim_{N\rightarrow\infty} \sum _{a=0}^{d-1} \sum_{x=0}^{p^{N}-1} (-1)^{a+x}f(a+dx) \\ &= \frac{1}{d}\sum_{a=0}^{d-1}(-1)^{a} \int_{\mathbb{Z}_{p}} f(a+dx)\, d \mu_{-1}(x). \end{aligned} \end{aligned}$$
(30)

By (30), if we take \(f(x_{i})=q^{a_{i}x_{i}}e^{a_{i}x_{i}t}\) for \(i=1, \ldots, r\), then we have

$$\begin{aligned} \int_{\mathbb{Z}_{p}} q^{a_{i}x_{i}}e^{a_{i}x_{i}t}\, d \mu_{-1}(x) =& \sum_{a=0}^{d-1}(-1)^{a} \int_{\mathbb{Z}_{p}} q^{a_{i}(a+dx-i)}e^{a_{i}(a+dx_{i})t} \, d \mu_{-1}(x_{i}) \\ =& \sum_{a=0}^{d-1}(-1)^{a} q^{a_{i} a}e^{a_{i} a t} \int_{\mathbb{Z}_{p}} q^{a_{i} dx_{i}}e^{a_{i} dx_{i}t}\, d \mu_{-1}(x_{i}). \end{aligned}$$
(31)

By (31), we get

$$\begin{aligned}& \int_{\mathbb{Z}_{p}} \cdots\int_{\mathbb{Z}_{p}} q^{a_{1}x_{1}+\cdots+a_{r}x_{r}} e^{(a_{1}x_{1}+\cdots+a_{r}x_{r}+x)t} \, d\mu_{-1}(x_{1})\cdots \, d\mu_{-1}(x_{r}) \\& \quad = \sum_{l_{1}, \ldots, l_{r}=0}^{d-1}(-1)^{l_{1}+\cdots +l_{r}}q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} \\& \qquad {}\times\int_{\mathbb{Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} q^{a_{1}\, dx_{1}+\cdots+a_{r}\, dx_{r}} e^{ (\frac{a_{1}l_{1}+\cdots+a_{1}l_{r} + x}{d}+ a_{1}x_{1}+\cdots+a_{r} x_{r} )\, dt} \, d\mu_{-1}(x_{1})\cdots \, d\mu_{-1}(x_{r}) \\& \quad = \sum_{n=0}^{\infty}d^{n} \sum_{l_{1}, \ldots, l_{r}=0}^{d-1}(-1)^{l_{1}+\cdots+l_{r}}q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} \int_{\mathbb {Z}_{p}}\cdots\int_{\mathbb{Z}_{p}} q^{a_{1}\, dx_{1}+\cdots+a_{r}\, dx_{r}} \\& \qquad {}\times \biggl(\frac{a_{1}l_{1}+\cdots+a_{1}l_{r} + x}{d}+ a_{1}x_{1}+ \cdots+a_{r} x_{r} \biggr)^{n} \, d \mu_{-1}(x_{1})\cdots\, d\mu_{-1}(x_{r}) \frac{t^{n}}{n!} \\& \quad = \sum_{n=0}^{\infty}d^{n} \sum_{l_{1}, \ldots, l_{r}=0}^{d-1}(-1)^{l_{1}+\cdots+l_{r}}q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} \\& \qquad {}\times E_{n,q^{d}} \biggl( \frac{a_{1}l_{1}+\cdots+a_{r}l_{r} + x}{d} \Big| a_{1}, \ldots, a_{r} \biggr) \frac{t^{n}}{n!}. \end{aligned}$$
(32)

By (27) and (32), we obtain the following theorem.

Theorem 3.2

Let \(n\in\mathbb{N}\cup\{0\}\). Then we have

$$\begin{aligned}& E_{n,q}(x| a_{1}, \ldots, a_{r}) \\& \quad = d^{n} \sum_{l_{1}, \ldots, l_{r}=0}^{d-1}(-1)^{l_{1}+\cdots +l_{r}}q^{a_{1}l_{1}+\cdots+a_{r}l_{r}} E_{n,q^{d}} \biggl( \frac{a_{1}l_{1}+\cdots +a_{r}l_{r} + x}{d} \Big| a_{1}, \ldots, a_{r} \biggr). \end{aligned}$$

References

  1. Kim, T: Barnes’ type multiple degenerate Bernoulli and Euler polynomials. Appl. Math. Comput. 258, 556-564 (2015)

    Article  MathSciNet  Google Scholar 

  2. Kim, T, Kim, DS, Bayad, A, Rim, S-H: Identities on the Bernoulli and the Euler numbers and polynomials. Ars Comb. 107, 455-463 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Kim, T, Dolgy, DV, Kim, DS, Rim, S-H: A note on the identities of special polynomials. Ars Comb. 113A, 97-106 (2014)

    MATH  MathSciNet  Google Scholar 

  4. Kim, T: On the analogs of Euler numbers and polynomials associated with p-adic q-integral on \(\mathbb{Z}_{p}\) at \(q=-1\). J. Math. Anal. Appl. 331(2), 779-792 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kim, DS, Kim, T: A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials. Russ. J. Math. Phys. 22(1), 26-33 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lim, D, Do, Y: Some identities of Barnes-type special polynomials. Adv. Differ. Equ. 2015, 42 (2015)

    Article  MathSciNet  Google Scholar 

  7. Luo, Q-M, Qi, F: Relationships between generalized Bernoulli numbers and polynomials and generalized Euler numbers and polynomials. Adv. Stud. Contemp. Math. 7(1), 11-18 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Ozden, H: p-Adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Comput. 218(3), 970-973 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Park, J-W, Rim, S-H: On the modified q-Bernoulli polynomials with weight. Proc. Jangjeon Math. Soc. 17(2), 231-236 (2014)

    MATH  MathSciNet  Google Scholar 

  10. Ryoo, CS, Kwon, HI, Yoon, J, Jang, YS: Fourier series of the periodic Bernoulli and Euler functions. Abstr. Appl. Anal. 2014, Article ID 856491 (2014)

    MathSciNet  Google Scholar 

  11. Ding, D, Yang, J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Proc. Jangjeon Math. Soc. 17(1), 115-123 (2014)

    MathSciNet  Google Scholar 

  12. Jang, LC: A family of Barnes-type multiple twisted q-Euler numbers and polynomials related to fermionic p-adic invariant integrals on \(\mathbb{ Z}_{p}\). J. Comput. Anal. Appl. 13(2), 376-387 (2011)

    MATH  MathSciNet  Google Scholar 

  13. Andrews, GE, Askey, R, Roy, R: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999). ISBN:0-521-62321-9; 0-521-78988-5

    Book  MATH  Google Scholar 

  14. Bayad, A, Kim, T: Results on values of Barnes polynomials. Rocky Mt. J. Math. 43(6), 1857-1869 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bayad, A, Kim, T, Kim, W, Lee, SH: Arithmetic properties of q-Barnes polynomials. J. Comput. Anal. Appl. 15(1), 111-117 (2013)

    MATH  MathSciNet  Google Scholar 

  16. Kang, D, Jeong, J-J, Lee, BJ, Rim, S-H, Choi, SH: Some identities of higher order Genocchi polynomials arising from higher order Genocchi basis. J. Comput. Anal. Appl. 17(1), 141-146 (2014)

    MATH  MathSciNet  Google Scholar 

  17. Chen, C-P, Srivastava, HM: Some inequalities and monotonicity properties associated with the gamma and psi functions and the Barnes G-function. Integral Transforms Spec. Funct. 22(1), 1-15 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kim, T: p-Adic q-integrals associated with the Changhee-Barnes’ q-Bernoulli polynomials. Integral Transforms Spec. Funct. 15(5), 415-420 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kim, T: Barnes-type multiple q-zeta functions and q-Euler polynomials. J. Phys. A 43(25), 255201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, T: On the multiple q-Genocchi and Euler numbers. Russ. J. Math. Phys. 15(4), 482-486 (2008)

    Article  MathSciNet  Google Scholar 

  21. Kim, T, Rim, S-H: On Changhee-Barnes’ q-Euler numbers and polynomials. Adv. Stud. Contemp. Math. 9(2), 81-86 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Can, M, Cenkci, M, Kurt, V, Simsek, Y: Twisted Dedekind type sums associated with Barnes’ type multiple Frobenius-Euler l-functions. Adv. Stud. Contemp. Math. 18(2), 135-160 (2009)

    MATH  MathSciNet  Google Scholar 

  23. Jang, L, Kim, T, Kim, Y-H, Hwang, K-W: Note on the q-extension of Barnes’ type multiple Euler polynomials. J. Inequal. Appl. 2009, Article ID 13532 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Kim, T: On Euler-Barnes multiple zeta functions. Russ. J. Math. Phys. 10(3), 261-267 (2003)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Chae Jang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, LC., Choi, SK. & Kwon, H.I. Some identities of higher order Barnes-type q-Bernoulli polynomials and higher order Barnes-type q-Euler polynomials. Adv Differ Equ 2015, 162 (2015). https://doi.org/10.1186/s13662-015-0495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-015-0495-6

MSC

Keywords