Open Access

Oscillation Criteria for Second-Order Delay Dynamic Equations on Time Scales

Advances in Difference Equations20072007:070730

DOI: 10.1155/2007/70730

Received: 4 September 2006

Accepted: 9 February 2007

Published: 16 April 2007

Abstract

By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order nonlinear delay dynamic equations on a time scale , here is a quotient of odd positive integers with p and q real-valued positive rd-continuous functions defined on .

[1234567891011121314151617181920212223242526]

Authors’ Affiliations

(1)
Institute of Applied Mathematics, Naval Aeronautical Engineering Institute
(2)
School of Science, Jinan University

References

  1. Hilger S: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results in Mathematics 1990,18(1–2):18–56.MATHMathSciNetView ArticleGoogle Scholar
  2. Agarwal RP, Bohner M, O'Regan D, Peterson A: Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics 2002,141(1–2):1–26. 10.1016/S0377-0427(01)00432-0MATHMathSciNetView ArticleGoogle Scholar
  3. Bohner M, Peterson A: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser, Boston, Mass, USA; 2001:x+358.MATHView ArticleGoogle Scholar
  4. Bohner M, Peterson A (Eds): Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, Mass, USA; 2003:xii+348.MATHGoogle Scholar
  5. Bohner M, Saker SH: Oscillation of second order nonlinear dynamic equations on time scales. The Rocky Mountain Journal of Mathematics 2004,34(4):1239–1254. 10.1216/rmjm/1181069797MATHMathSciNetView ArticleGoogle Scholar
  6. Erbe L: Oscillation results for second-order linear equations on a time scale. Journal of Difference Equations and Applications 2002,8(11):1061–1071. 10.1080/10236190290015317MATHMathSciNetView ArticleGoogle Scholar
  7. Erbe L, Peterson A, Saker SH: Oscillation criteria for second-order nonlinear dynamic equations on time scales. Journal of the London Mathematical Society. Second Series 2003,67(3):701–714. 10.1112/S0024610703004228MATHMathSciNetView ArticleGoogle Scholar
  8. Saker SH: Oscillation criteria of second-order half-linear dynamic equations on time scales. Journal of Computational and Applied Mathematics 2005,177(2):375–387. 10.1016/j.cam.2004.09.028MATHMathSciNetView ArticleGoogle Scholar
  9. Saker SH: Oscillation of nonlinear dynamic equations on time scales. Applied Mathematics and Computation 2004,148(1):81–91. 10.1016/S0096-3003(02)00829-9MATHMathSciNetView ArticleGoogle Scholar
  10. Agarwal RP, Bohner M, Saker SH: Oscillation of second order delay dynamic equations. The Canadian Applied Mathematics Quarterly 2005,13(1):1–17.MATHMathSciNetGoogle Scholar
  11. Agarwal RP, O'Regan D, Saker SH: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. Journal of Mathematical Analysis and Applications 2004,300(1):203–217. 10.1016/j.jmaa.2004.06.041MATHMathSciNetView ArticleGoogle Scholar
  12. Bohner M: Some oscillation criteria for first order delay dynamic equations. Far East Journal of Applied Mathematics 2005,18(3):289–304.MATHMathSciNetGoogle Scholar
  13. Sahiner Y: Oscillation of second-order delay differential equations on time scales. Nonlinear Analysis: Theory, Methods & Applications 2005,63(5–7):e1073-e1080.MATHView ArticleGoogle Scholar
  14. Sahiner Y: Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales. Advances in Difference Equations 2006, 2006: 9 pages.MathSciNetView ArticleGoogle Scholar
  15. Saker SH: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. Journal of Computational and Applied Mathematics 2006,187(2):123–141. 10.1016/j.cam.2005.03.039MATHMathSciNetView ArticleGoogle Scholar
  16. Zhang BG, Deng X: Oscillation of delay differential equations on time scales. Mathematical and Computer Modelling 2002,36(11–13):1307–1318.MATHMathSciNetView ArticleGoogle Scholar
  17. Zhang BG, Zhu S: Oscillation of second-order nonlinear delay dynamic equations on time scales. Computers & Mathematics with Applications 2005,49(4):599–609. 10.1016/j.camwa.2004.04.038MATHMathSciNetView ArticleGoogle Scholar
  18. Erbe L, Peterson A, Saker SH: Hille-Kneser-type criteria for second-order dynamic equations on time scales. Advances in Difference Equations 2006, 2006: 18 pages.MathSciNetView ArticleGoogle Scholar
  19. Han Z, Sun S, Shi B: Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales. to appear in Journal of Mathematical Analysis and Applications
  20. Agarwal RP, Shieh S-L, Yeh C-C: Oscillation criteria for second-order retarded differential equations. Mathematical and Computer Modelling 1997,26(4):1–11. 10.1016/S0895-7177(97)00141-6MathSciNetView ArticleGoogle Scholar
  21. Chen SZ, Erbe LH: Riccati techniques and discrete oscillations. Journal of Mathematical Analysis and Applications 1989,142(2):468–487. 10.1016/0022-247X(89)90015-2MATHMathSciNetView ArticleGoogle Scholar
  22. Chen SZ, Erbe LH: Oscillation and nonoscillation for systems of self-adjoint second-order difference equations. SIAM Journal on Mathematical Analysis 1989,20(4):939–949. 10.1137/0520063MATHMathSciNetView ArticleGoogle Scholar
  23. Erbe L: Oscillation criteria for second order nonlinear delay equations. Canadian Mathematical Bulletin 1973, 16: 49–56. 10.4153/CMB-1973-011-1MATHMathSciNetView ArticleGoogle Scholar
  24. Ohriska J: Oscillation of second order delay and ordinary differential equation. Czechoslovak Mathematical Journal 1984,34(109)(1):107–112.MathSciNetGoogle Scholar
  25. Thandapani E, Ravi K, Graef JR: Oscillation and comparison theorems for half-linear second-order difference equations. Computers & Mathematics with Applications 2001,42(6–7):953–960. 10.1016/S0898-1221(01)00211-5MATHMathSciNetView ArticleGoogle Scholar
  26. Zhang Z, Chen J, Zhang C: Oscillation of solutions for second-order nonlinear difference equations with nonlinear neutral term. Computers & Mathematics with Applications 2001,41(12):1487–1494. 10.1016/S0898-1221(01)00113-4MATHMathSciNetView ArticleGoogle Scholar

Copyright

© Zhenlai Han et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.